Dissertação

Avaliação do efeito protetor da Euterpe oleracea (açaí) na resposta eletrofisiológica da retina de ratos expostos ao metilmercúrio

Methylmercury (MeHg) is organic form most toxic of mercury. The MeHg exposure generates oxidative stress may affect the retina, because it has a high vulnerability due to their high content of polyunsaturated fatty acids and oxygen consumption. In this context, administration of exogenous antioxidan...

ver descrição completa

Autor principal: COSTA, Alódia Brasil
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2013
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/3739
Resumo:
Methylmercury (MeHg) is organic form most toxic of mercury. The MeHg exposure generates oxidative stress may affect the retina, because it has a high vulnerability due to their high content of polyunsaturated fatty acids and oxygen consumption. In this context, administration of exogenous antioxidants obtained from the diet, such as those present in Euterpe oleracea (açaí), could be a way to prevent this imbalance and its consequences. Therefore, the objective of this study was to evaluate the possible protective effect of Euterpe oleracea in electrophysiological changes caused by MeHg in the retina. For this was performed gavage with MeHgCl (5mg/kg) or saline (NaCl 0.9%) for 7 days and pretreatment with açaí (10%) per 28 days. Was used Wistar rats were divided into 4 groups: Group MeHg (received standard diet and MeHgCl); MeHg + Acai (enriched diet with acai and MeHgCl); Acai (enriched diet with açai and NaCl); Vehicle (standard diet and NaCl). One day after the last gavage animals were subjected to full-field electroretinography (ffERG) to obtain the scotopic responses (rods, mixed 1 and mixed 2) and photopic responses (cone and flicker at 12, 18, 24 and 30Hz). The next day to the ffERG was applied open field test to evaluate the animals locomotor activity. Subsequently, measurement of the lipid peroxidation by the method TBARS in retinal tissue. Statistical analysis was done by one-way ANOVA with Tukey post-test, considering significant p<0.05. The open field and body weight results showed no difference between groups. The MeHg reduced the amplitude of the following responses: b-wave in rod response (Vehicle: 114.6 ± 23.6 μV and MeHg: 41.2 ± 9.6 μV); a-wave (Vehicle: 8.4 μV and MeHg ± 1.4: 3.4 ± 0.3 μV) and b-wave (Vehicle: 176.7 ± 17.8 μV and MeHg: 69.5 ± 12.0 μV) in mixed 1 responses; a-wave (Vehicle: 103.1 ± 23.3 μV and MeHg: 40.2 ± 9.6 μV) and b-wave (Vehicle: 281 ±, 38.3 μV and MeHg: 138.6 ± 14μV) in mixed 2 response; a-wave (Vehicle: 27.2 ± 3.6 μV and MeHg: 7.5 ± 1.8 μV) and b-wave (Vehicle: 139.3 ± 16.1 μV and MeHg: 54.4 ± 10μV) of cones response; b-wave in frequencies 12 Hz (Vehicle: 67.7 ± 10μV and MeHg: 28.6 ± 6.9 μV), 18Hz (Vehicle: 31.3 ± 3.4 μV and MeHg : 14.2 ± 2.3 μV), 24Hz (Vehicle: 21.0 ± 1.8 μV and MeHg: 11.0 ± 1.1 μV) and 30Hz (Vehicle: 10.9 ± 0.6 μV and MeHg: 6.0 ± 1.1 μV). While the implicit time of the waves was not altered. The pretreatment with Euterpe oleracea prevented the decrease of amplitude of both waves in mixed 1 (a-wave: 8.3 ± 0.6 μV; b-wave: 144.1 ± 7,1 μV) and mixed 2 responses (a-wave: 106.4 ± 13.6 μV; b-wave: 275,2±27,6 μV), b-wave of cone response (104.5 ± 5.9 μV) and photopic flicker at 12 Hz (67.2 ± 9.1 μV), 18 Hz (29.5 ± 4.8 μV) and 24 Hz (21.9 ± 2.4 μV). Lipid peroxidation in retinal tissue of MeHg group (294.9 ± 205.8%) was higher than that of the Vehicle (100 ± 25.1%) and açaí protected against this oxidative damage (MeHg + Acai = 111.2 ± 26.1%). Our results demonstrate diffuse alteration in the electrophysiological response and increase in lipid peroxidation of the retina induced by MeHg and protection exerted by Euterpe oleracea in these two parameters. Thus, Euterpe oleracea could be used as an important alternative to attenuate the changes in the retina caused by MeHg.