/img alt="Imagem da capa" class="recordcover" src="""/>
Tese
Efeito de interferência quântica no transporte eletrônico de dispositivos "quasi"-unidimensionais
The study of electronic transport in nano devices has been of great relevance in the last years, since the work of Aviran and Ratner, based on the properties of electrical conductivity in individual rectifying molecules under the action of an external electric field. The organic conjugated polymers...
Autor principal: | OLIVEIRA, Alexandre de Souza |
---|---|
Grau: | Tese |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2018
|
Assuntos: | |
Acesso em linha: |
http://repositorio.ufpa.br/jspui/handle/2011/10092 |
Resumo: |
---|
The study of electronic transport in nano devices has been of great relevance in the last years, since the work of Aviran and Ratner, based on the properties of electrical conductivity in individual rectifying molecules under the action of an external electric field. The organic conjugated polymers in the pure state have low conductivity, but when doped, treated with reducing agents or connected to gold electrodes (Au) and subjected to an external electric field, they have a metallic behavior, that is, with high conductivity in line with experimental work. In this research we used devices composed of organic polymers conjugated in the pure state and also doped with chains containing simple (σ) and double (σ-π) type bonds, alternating between the carbons and these bound only to hydrogen atoms with gold electrodes (Au) connected at the ends of the individual molecules. This study was proposed for two types of electrodes: pyramid and plane. The model devices were optimized through the Extended Hückel Theory (EHT) and the computation of the electronic transport was performed using EHT combined with the Non-Equilibrium Green Function (NEGF). These devices are either quasi-1D or approximately linear structures and have been divided into two groups: the first, with odd numbers of carbon atoms from five (5) to nineteen (19) carbon atoms in their individual molecule (Group 1) and the second, with even numbers starting at six (6) going up to twenty (20) carbon atoms in its individual molecule (Group 2). The devices were subjected to two conditions: at low voltage, ranging from 0 to 0.1 Volt and then to high voltage, from 0 to 1.0 Volt. In order to compare the current and voltage (I - V) curves and the differential - voltage conductance (G - V) between low and high voltage results, the same voltage range was used, that is, from 0 to 0.1 Volt. For this work, the effects of destructive quantum interference (DQI) as well as constructive quantum interference (CQI) were analyzed. The effects of DQI are produced due to anti-resonance in the transmittance evidenced by unaccessed states observed in the transmission peaks, not allowing the transport to occur without presenting oscillations in the conductivity curve. |