The increase in the consumption of data traffic is motivated by the increasing number of devices like smartphone and tablets, since there is a need to be connected with everything and with everyone. Applications such as streaming video and online games require a higher rate of data transmission, this high demand corroborates the
overload of mobile networks based on radio frequency, so as to culminate in a possible shortage of the RF spectrum. Therefore, this work seeks to optimize offloading between LTE and VLC, and for this a methodology based on reinforcement learning called Q-Learning is used. The algorithm uses as input the environment variables that are related to the signal quality, density and speed of the user to learn and select the best connection. Therefore, the results of the simulation show the efficiency of the proposed methodology in comparison with the predominant RSS scheme in the area literature. as it has been proven by QoS metrics to support higher data rates,
as well as ensuring an 18% improvement over service interruptions as the number of users increases in the system.
|