/img alt="Imagem da capa" class="recordcover" src="""/>
Tese
Geologia e metalogênese do ouro do greenstone belt da Serra das Pipocas, Maciço de Troia, Província Borborema, NE - Brasil
At the Archean–Paleoproterozoic Troia Massif, in Borborema Province, NE–Brazil, two major Paleoproterozoic greenstone belts are recognized (Algodões and Serra das Pipocas). These share similar ages and lithostratigraphic characteristics with other 2.2–2.1 Ga greenstone belts of the surrounding crato...
Autor principal: | COSTA, Felipe Grandjean da |
---|---|
Grau: | Tese |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2018
|
Assuntos: | |
Acesso em linha: |
http://repositorio.ufpa.br/jspui/handle/2011/10497 |
Resumo: |
---|
At the Archean–Paleoproterozoic Troia Massif, in Borborema Province, NE–Brazil, two major Paleoproterozoic greenstone belts are recognized (Algodões and Serra das Pipocas). These share similar ages and lithostratigraphic characteristics with other 2.2–2.1 Ga greenstone belts of the surrounding cratonic domains (e.g. Guiana shield and São Luis–West Africa craton), and also host gold mineralization. In this thesis, a U–Pb zircon age of 2185 Ma was obtained for a pre–collisional metatonalite (Mirador tonalites) with geochemical affinity similar to adakites–like rocks. For syn– to post–collisional potassic plutons (Bananeira suite) we obtained U–Pb zircon ages of 2079 Ma for a deformed quartz monzonite and of 2068 Ma for the less–deformed equigranular granite. These granitoids of the Bananeira suite are both of high–K calc–alkaline affinity, and probably derived from partial melting of crustal sources. Zircon Hf crustal model ages of all granitoids range between 2800 and 2535 Ma, indicating that Archean crustal components contributed to their magma genesis. However, two analyzed c. 2.3 Ga old inherited zircon grains showing Ɛ<sub>Hf</sub> (t) values of c. +4.9, indicate that crustal reworking of less–radiogenic Paleoproterozoic sources also participated. Gold mineralization in the Serra das Pipocas greenstone belt is associated with a regional NE-trending shear zone. The mineralized areas (the Pedra Branca gold deposit) are located near–parallel to the stratigraphy, siting on shear zones, between metavolcanic and metasedimentary unit boundaries. The main stage of gold mineralization is found in association with quartz veins, high–temperature calc–silicate alteration (diopside, K–feldspar, amphibole, titanite, biotite, pyrite, albite, magnetite ± carbonates) and albitization. Free–milling gold commonly precipitates in close association with magnetite and gold/silver tellurides. Two fluid inclusion assemblages were identified in mineralized quartz veins. Assemblage 1 is characterized by pseudo–secondary trails that show the coexistence of CO<sub>2</sub>–rich and low salinity (0 to 8 wt% NaCl equiv.) CO<sub>2</sub>–H<sub>2</sub>O–NaCl and H<sub>2</sub>O–NaCl inclusions, suggesting formation during phase separation (fluid immiscibility). The mean isochores intersection of CO<sub>2</sub>–rich and H<sub>2</sub>O–NaCl inclusions of assemblage 1 suggests PT conditions of 495 °C and 2.83 kbar (c. 10.5 km depth), akin to hypozonal orogenic gold deposits. Assemblage 2 is represented by late secondary low–temperature (Th<200°C) H<sub>2</sub>O–NaCl inclusions, probably unrelated to gold mineralization. The δ<sup>18</sup>O, δD and δ<sup>13</sup>C values of hydrothermal minerals (quartz, calcite, biotite, hornblende and magnetite) define fluid δ<sup>18</sup>O values ranging from +8.3 to +11.0‰ (n=59), fluid δD from -98 to -32‰ (n=24) and δ<sup>13</sup>C values of calcite from -6.35 to -9.40‰ (n=3). Oxygen isotope thermometry for quartz–magnetite pairs gave temperatures from 467 to 526°C (n=7, average 503°C), which probably represents the temperature of gold deposition. The association of gold with magnetite and tellurides strongly suggests an ore–forming fluid sourced by oxidized magmas, similar to those interpreted as ‘orogenic oxidized intrusion– related gold deposits’ in other Precambrian greenstone belts (e.g. Abitibi and Eastern Goldfields). Four deformation events (Dn, Dn+1, Dn+2 and Dn+3) are recognized in the Serra das Pipocas greenstone belt. The Dn event is responsible for the early Sn foliation, parallel to bedding (So) of the greenstone pile. The Dn+1 event is characterized by a pervasive, southeasterly–dipping Sn+1 foliation that is axial–planar to a number of asymmetric, tight to isoclinal and recumbent folds. The Dn+2 event represents a transcurrent deformation phase and the late Dn+3 event is characterized by ductile–brittle deformation. The main stage of gold mineralization is found as deformed quartz veins and associated high–temperature alteration, but some lower temperature gold (±Te, Ag) occurrence along the late stage brittle structures (Dn+3 event) is also observed. The U–Pb titanite age of 2029 ± 28 Ma for the high– temperature calc–silicate alteration (and gold mineralization) is presented here. However, the strong Pb loss of titanite grains defines a 574 ± 7 Ma lower intercept age, evidencing that early gold mineralization were broadly affected by Neoproterozoic deformational events and metamorphism (Brasiliano/Pan–African orogeny). The U–Pb zircon age of 575 ± 3 Ma for syn–tectonic diques bracketed the age of late Dn+3 deformation event. Then, the progressive deformation recorded (Dn+1, Dn+2 and Dn+3) is probably of Neoproterozoic age, with the maximum compressive stress (ζ1) in the WNW–ESE direction. However, at local scale, Paleoproterozoic deformation records (Dn) still preserved. The genetic model for the Pedra Branca gold deposit is suggested here by a two–stage exhumation–drive gold mineralization; represented by a (1) early oxidized hypozonal orogenic gold mineralization (main stage) that occurred at c. 2029 Ma, shortly after the high–grade Paleoproterozoic metamorphism and first exhumation processes of the greenstone pile, and later on, at c. 580 Ma, a (2) late gold mineralization (remobilization?) occurred at shallow levels (second exhumation process) associated to late Neoproterozoic Brasiliano/Pan–African orogeny. |