Tese

Avaliação de potencial hidrocinético à jusante de centrais hidrelétricas

The maximization of the performance of hydropower projects by taking advantage of the remaining energy downstream of dams via the installation of hydrokinetic turbines is feasible. In this context, two case studies of the hydroelectric power plants are presented, one of large Tucuruí in the Tocatins...

ver descrição completa

Autor principal: HOLANDA, Patrícia da Silva
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Pará 2019
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/10515
Resumo:
The maximization of the performance of hydropower projects by taking advantage of the remaining energy downstream of dams via the installation of hydrokinetic turbines is feasible. In this context, two case studies of the hydroelectric power plants are presented, one of large Tucuruí in the Tocatins river, Amazonia, and another of medium size Bariri in the Tietê river, in the Southeast of Brazil.In central hydrokinetic projects, the design of the rotor diameter and velocity of the water are fundamental and depend on the depth and velocity of the river, respectively. Thus, the Saint-Venant model has been applied to these areas of studies. The calibration of the model was performed by linear regression of the measured and simulated flow rates for both, resulting in a correlation of 0.99. Validation was performed for a point on the Tocantins river using velocities measured with an acoustic Doppler current profiler (ADCP). The measured velocities are comparable to the velocities simulated by the model. Thus, a power curve was generated for the measured flow rates and the simulated velocities for the point at which the velocities were validated, thus obtaining a correlation of 0.96. This same curve was used for estimates of velocity, calculation of the energy density, and defining a design velocity for Tucuruí HPP equal to 2.35 m/s and Bariri 2.25 m/s. After the design was velocity defined, 10 points were selected Tucuruí and 1 point Bariri for the location of hydrokinetic turbines. The velocities of these points were determined with the same method used for the validation of the velocities. The points were selected based on the channel downstream of the reservoir and at the end of the Bariri dissipation basin, with the largest depth and velocity, which are characteristics favorable for greater power generation. Considering the rivers depth and available manufacturing technology, the rotor diameter was defined for the large study in 10 m and for the medium 2.1 m. After the design velocity was defined, the rotor design was implemented using the blade element method (BEM Blade Element Momentum), allowing for the definition of an installed power curve of the turbine as a function of the river velocity. In terms of generated energy, the 10 turbines can generate 2.04 GWh/year. These numbers demonstrate the potential for utilizing the remaining energy of hydroelectric plants.