Dissertação

Alteração hidrotermal e potencial metalogenético do vulcanoplutonismo paleoproterozoico da região de São Félix do Xingu (PA), Província Mineral de Carajás

The region of Sao Felix do Xingu, south-central Pará, exposes a volcano-plutonic system exceptionally well preserved and grouped in the Sobreiro and Santa Rosa formations, in which hydrothermal alteration and mineralization associated were recognized. The Sobreiro Formation consists of lava facies f...

ver descrição completa

Autor principal: CRUZ, Raquel Souza
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2019
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/10682
Resumo:
The region of Sao Felix do Xingu, south-central Pará, exposes a volcano-plutonic system exceptionally well preserved and grouped in the Sobreiro and Santa Rosa formations, in which hydrothermal alteration and mineralization associated were recognized. The Sobreiro Formation consists of lava facies flow of andesitic, basaltic andesite, and dacitic composition, according to the proportions or absence of clinopyroxene and/or amphibole phenocrysts. Volcaniclastic facies is genetically associated and is represented by mafic crystals tuff, lapilli-tuff, and massive polymictic breccia. Santa Rosa Formation is fissure-contolled and composed of lava flow facies and associated volcaniclastic facies of felsic crystal tuffs, ignimbrites, lapilli-tuff, and massive polymictic breccia. Part of this system is interpreted as ash-flow caldera partially eroded and developed in several stages. Conventional petrography, X-ray diffraction (XRD), scanning electron microscopy (SEM), and infrared spectroscopy show hydrothermal alteration paragenesis occurring in these rocks. In general, the alteration minerals develop subeuhedral anhedral crystals and replace magmatic minerals. The types of hydrothermal alteration identified are incipient the pervasive and are distinguished propylitic, sericitic, intermediate argillic, and potassic, which overlap, and fracture-controlled silicification associated with hematite and carbonate. Propylitic alteration, prevalent in Sobreiro Formation, presents both pervasive and fracture-controlled styles. The paragenesis consists of epidote + chlorite + carbonate + quartz + sericite + clinozoisite ± albite ± hematite ± pyrite, which is overlapped by pervasive potassic alteration or fracture-controlled, mainly represented by potassic feldspar + biotite ± hematite. Locally, fracture is filling with prehnite-pumpellyite association that suggests geothermal low-grade metamorphism conditions. The sericitic alteration is marked by the occurrence of mainly sericite + quartz + carbonate ± epidote ± chlorite ± muscovite. It is manifested mainly in mafic crystal tuff. However, the overlap of these types of changes is evidenced by relics of propylitic chlorite alteration and textures of rocks, partially obliterated, in which there were only pseudomorphs of sericitized plagioclase. In the Santa Rosa Formation the sericitic alteration is pervasive and characterized by the occurrence of sericite + quartz + carbonate. Also presents fracture-controlled, which is represented by sericite + quartz. It is the main type of change identified in this unit by assigning the whitish rocks. SEM data show that, associated with the sericitic alteration occur lead phosphate, gold, rutile, and barite. The potassic alteration is more subordinate, generally associated with granitic porphyry and locally to rhyolites. Paragenesis is given by microcline + biotite + chlorite + carbonate + sericite ± albite ± magnetite. The intermediate argillic alteration was recognized in rhyolites and possibly corresponds to the final stages of hydrothermal alteration. It is characterized by the presence of montmorillonite + illite + chlorite + sericite ± kaolinite ± halloysite ± quartz ± hematite, which were identified by infrared spectroscopy and XRD. It gives whitish to whitish pink to the rocks. The hydrothermal alteration types were mainly controlled by temperature, fluid composition, and fluid/rock ratios. They are compatible with thermal anomalies related to magma, and possible temperature decrease due to mixing and neutralization with meteoric water, similar to that described in low- and intermediate-sulfidation mineralization. Gold identification and compatible accessories phases provide important information for prospective studies in the region, especially for potential intermediate- and low-sulfidation epithermal deposits of precious metals (gold and silver) in volcano-plutonic systems with related ash flow calderas, as well the Au(Cu) and Mo porphyry-type deposits.