Tese

Análise do efeito tóxico e alterações transcriptomicas de células neuronais e gliais após exposição ao fluoreto

Despite being widely used in dentistry for dental carie control, in high amounts fluoride may be associated with side effects of which the best known is dental fluorosis. In addition, studies suggest that even at low concentrations fluoride may exerts toxicity leading to damage on CNS. Functional to...

ver descrição completa

Autor principal: GOMES, Bruna Puty Silva
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Pará 2019
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/11237
Resumo:
Despite being widely used in dentistry for dental carie control, in high amounts fluoride may be associated with side effects of which the best known is dental fluorosis. In addition, studies suggest that even at low concentrations fluoride may exerts toxicity leading to damage on CNS. Functional toxicogenomics analysis of gene profile after exposure to contaminants has been used as a tool for the identification of biomarkers of exposure, as well as for the identification of signaling pathways that may be used for treatment and / or prevention of damage caused by the toxicity of certain compounds. As the molecular mechanism of fluoride toxicity still unknow, analysis of F chronic exposure on gene expression profile of CNS cells are necessary. Here we aimed to show the effect of fluoride exposure of plasma concentration founded on population that used to be exposed to fluoridated drink water, on the main CNS cells. In this way, we have used human cell lineage IMR-32 (neurons) and U87 (glial cells) to analyze parameter of viability, morphology and cell metabolism, ATP-synthesis, oxidative stress, DNA damage and global gene expression profile after 10 days exposure. Our results have shown that fluoride does not induce changes in IMR-32 cells. On the other hand, it induces cell death by necrosis, increased metabolism, decrease in ATP and GSH / GSSG in U87 cells and DNA fragmentation. The U87 gene expression profile is differentially altered after fluoride exposure, decreasing 1735 genes and an increasing expression of 1047 genes after exposure to 0.095μg / mL and decreasing of 1863 gene expression and increasing of 1023 expression after exposure to 0.22μg / mL. We also highlighted the major molecular pathways altered after exposure, such as the signaling pathway TNF-alpha via NFK-B and mitochondrial process. We also showed genes with significant importance biology (hub genes) such as the genes PTGES3, EP300, CYP1B1, RPS27A. Our results suggests that glial cell are affected by fluorides exposure and mitochondria has a major role on the mechanism of fluoride toxicity.