/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Estrutura competitiva de redes neurais convolucionais auto-associativas para classificação de arritmias
This work presents the proposal of two automatic systems to aid in the detection of anomalies in heart beats and medical decision support. The systems were developed for the identification of rhythmic arrhythmia and morphological arrhythmias from signals obtained from an electrocardiogram (ECG). Bot...
Autor principal: | BAIA, Alexandre Farias |
---|---|
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2019
|
Assuntos: | |
Acesso em linha: |
http://repositorio.ufpa.br/jspui/handle/2011/11251 |
Resumo: |
---|
This work presents the proposal of two automatic systems to aid in the detection of anomalies in heart beats and medical decision support. The systems were developed for the identification of rhythmic arrhythmia and morphological arrhythmias from signals obtained from an electrocardiogram (ECG). Both systems are based on a competitive structure of Convolutional Autoencoders (CAE), and each network was trained to reconstruct the signals presented at its entrance. For the case of the rhythmic classifier, the system was developed from the use of the ECG signals, without undergoing a feature extraction process, and for the case of the morphological classifier, the system was based on the QRS complex extracted from the ECG signal. For the development and testing of the systems, the database MIT-BIH Arrhythmia of ECG signals was used. An accuracy of 88.9% was achieved for the Rhythmic Classifier and 81.73% for the Morphological Classifier, in the case in which the evaluation basis is considered. The results obtained demonstrate the applicability of the proposed competitive structures to the arrhythmia classification problem. |