/img alt="Imagem da capa" class="recordcover" src="""/>
Tese
Circuladores de grafeno de banda ultralarga para região THz
Non-reciprocal components are indispensable parts of many microwave and optical systems. In the future, THz communication systems will also require these components. Existing publications show that the bandwidth of graphene-based circulators in the THz region can be 10% to 20% with the use of rather...
Autor principal: | SILVA, Samara Leandro Matos da |
---|---|
Grau: | Tese |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2019
|
Assuntos: | |
Acesso em linha: |
http://repositorio.ufpa.br/jspui/handle/2011/11426 |
Resumo: |
---|
Non-reciprocal components are indispensable parts of many microwave and optical systems. In the future, THz communication systems will also require these components. Existing publications show that the bandwidth of graphene-based circulators in the THz region can be 10% to 20% with the use of rather complicated structures. The suggested circulators are formed by a graphene junction with concave pattern connected to the waveguides. Graphene is supported by SiO2/Si layers. The circulating behavior is based on the nonsymmetry of the graphene conductivity tensor that appears due to magnetization by a DC magnetic field normally applied to the plane of the graphene. We discuss the main parameters that define the bandwidth and its influence on it. Circulators have record bandwidth that is twice as high as those published. We have shown that the circulator Y can have the bandwidth of 42% in the frequency range (2.75 ÷ 4.2) THz, with the insulation better than −15 dB and the larger insertion losses that −2 dB, provided by the DC magnetic field polarization of 1.5 T and the chemical potential of 0.15 eV. For the two 4-port circulators we achieved a bandwidth of 44% for the same physical parameters. |