Dissertação

Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás.

The Cu-Au Visconde deposit lies at the contact zone between the basement (>3.0Ga) and the Grão Pará Group (2.76 Ga) within the so-called Transition Domain of the Mineral Carajás Province. It is located at about 15 km east of the Cu-Au Sossego mine in the county of Canaã de Carajás, Pará state. Felsi...

ver descrição completa

Autor principal: CRAVEIRO, Gustavo Souza
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2019
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/11761
id ir-2011-11761
recordtype dspace
spelling ir-2011-117612019-09-13T05:25:55Z Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás. CRAVEIRO, Gustavo Souza VILLAS, Raimundo Netuno Nobre http://lattes.cnpq.br/1406458719432983 Geologia econômica Província mineral de Carajás (PA) Alteração hidrotermal Inclusões fluídas CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS GEOQUÍMICA E PETROLOGIA The Cu-Au Visconde deposit lies at the contact zone between the basement (>3.0Ga) and the Grão Pará Group (2.76 Ga) within the so-called Transition Domain of the Mineral Carajás Province. It is located at about 15 km east of the Cu-Au Sossego mine in the county of Canaã de Carajás, Pará state. Felsic metavolcanic rocks, probably belonging to that group, as well as granitic and mafic intrusions, dominate in the deposit and neighboring area. Subordinate ultramafic bodies occur within the mafic units. All these rocks are moderately to strongly hydrothermally altered and show varying degrees of deformation. Mafic dikes and a granitoid isotropic body, the latter probably related to the granitogenesis of 1.88 Ga, represent the last igneous activity in the area and cut the pre-existing rock package. Despite the mineralogical and textural changes, it was possible to infer a monzogranitic to granodioritic composition to the original granitoids largely based on the amounts of chess-board albite. Moreover, the scarcity of primary mafic minerals makes these granitoids similar to the Planalto Granite, which crops out approximately 7 km east of the deposit area. The mineral content and the partially preserved subophitic texture are suggestive that gabros and/or quartz diorites were potential protoliths of the mafic intrusions. On the other hand, the recognition of plagioclase, quartz and K-feldspar primary phenocrysts and the use of trace elements with limited mobility in the hydrothermal environment allowed discriminating a riodacitic composition for the protolith of the felsic volcanic rocks. Grading from ductile to brittle regimes, the hydrothermal alteration changed from early sodic-calcic assemblages, characterized by ubiquitous albitization, scapolitization or amphibolitization, to late potassic assemblages, in which the K-feldspar and Cl-biotite are the diagnostic minerals. Then the alteration restored its sodic-calcic character as indicated by albite, epidote, apatite, tourmaline and fluorite that replaced pre-existing minerals or filled open spaces. At last, it is recorded a calcic-magnesian stage during which clinochlore/Fe-clinochlore, actinolite, carbonate and subordinate talc were equilibrated. In the granitoids, albitization, epidotization and tourmalinization were the most prominent alteration processes, whereas scapolitization, biotitization, amphibolitization and magnetization were more remarkable in gabros/quartz diorites and K-feldspatization in the felsic metavolcanic rocks. The ore, whose formation began at the final stages of the potassic alteration, was essentially controlled by brittle structures. Initially represented by weak chalcopyrite, molybdenite and pyrite disseminations in the zones altered to tremoliteactinolite, scapolite, albite and magnetite, the mineralization evolved to sulfide concentrations in veins and breccias. Among the sulfides chalcopyrite, bornite, molybdenite are dominant, but pyrite and pentlandite also occur together with apatite, scapolite, actinolite, epidote, magnetite, martite, hematite, calcite, and gypsum or fluorite as the main gangue minerals. The typical metallic suite of the sulfide breccia is Fe–Cu–Ni–ETR±Au±Zn±Y±Co±Se, with ƩETR as high as 1030 ppm. Fluid inclusions trapped in quartz, scapolite, apatite and calcite crystals unraveled at least three aqueous fluids. Fluid 1, simplified by the system H2O-NaCl-CaCl2±MgCl2 and present in all host minerals, was hot (450–500ºC) and very saline (up to 58 wt% equivalent NaCl). The alteration and mineralization haloes should have resulted from the interaction of the host rocks with this fluid, which might have experienced cooling and dilution probably due to mixing with surficial waters. After the mineralization event, the deposit recorded the successive inflow of fluid 2 (H2O-NaCl-FeCl2±MgCl2, up to 30 wt % equiv. NaCl) and fluid 3 (H2O-NaCl±KCl, up to 18 wt % equiv. NaCl), both cooler than fluid 1. With a restrict circulation and preserved only in quartz and apatite crystals, fluid 2 might have been related to the intrusion of the late mafic dikes, whereas fluid 3 migration would have taken place in response to the emplacement of the alkali granite (1.88 Ga?), being trapped, similarly to fluid 1, in all host minerals, but as secondary IF. The high salinity and no evidence of boiling, coupled with the presence of Cl-rich minerals, suggest that a purely magmatic source is unlike for fluid 1. As an alternative, it is assumed a mixed source, involving the migration of magmatic or metamorphic fluids throughout carbonatic-evaporitic sequences from which Na, Ca and Cl have been largely leached. The mineralogical, chemical and microthermometric data allowed to characterize the mineralizing fluid as an aqueous solution consisting of NaCl, CaCl2, KCl, FeCl2 and MgCl2(?) that also carried P, B, F, Y, Ba, Sr, Rb and ETR, Cu, Ni and Co, besides S species. The Sossego and the Visconde deposits present similarities in terms of (1) the nature of the host rocks (felsic metavolcanics, granitoids, and mafic intrusions), (2) the types of alteration, highlighting the intense and widespread sodic-calcic metassomatism, (3) the occurrence of the major ore bodies in brecciated zones and (4) the Fe-Cu-Ni-ETR±Au±Co as the metallic signature of the ore. Regarding the main differences, the sub-economic sulfide accumulations and the smaller amounts of massive magnetitites of the Visconde deposit could be listed. CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior No Domínio de Transição da Província Mineral de Carajás, está localizado o depósito cuproaurífero Visconde, a 15 km a leste da mina Sossego. Geologicamente, jaz próximo ao contato entre o embasamento (>3,0 Ga) e o Grupo Grão Pará (2,76 Ga). No depósito e circunvizinhanças, dominam granitoides e corpos máficos, intrusivos em rochas metavulcânicas félsicas, possivelmente pertencentes àquele grupo. Dentro dos corpos máficos, ocorrem variedades ultramáficas subordinadas. Todas essas rochas mostram-se moderadas a fortemente hidrotermalizadas, além de apresentarem variado grau de deformação. Como manifestações ígneas finais, diques máficos e um corpo granitoide isótropo, relacionado provavelmente à granitogênese de 1,88 Ga, cortam o pacote rochoso pré-existente. Não obstante as mudanças mineralógicas e texturais, foi possível inferir para os granitoides, a composição original como monzogranítica a granodiorítica, tendo-se como base, em grande parte, a abundância de albita com textura tabuleiro de xadrez. Além disso, a escassez de minerais máficos primários os torna similares ao Granito Planalto, que fica a 7 km a leste da área. O conteúdo mineralógico e textura subofítica, localmente preservada, sugerem ter sido gabro e/ou quartzodiorito os possíveis protólitos das rochas máficas intrusivas, enquanto que para as rochas metavulcânicas félsicas, a identificação de fenocristais de plagioclásio, quartzo e K-feldspato primários, e a classificação com base em elementos traços de limitada mobilidade em ambiente hidrotermal, permitiram apontar protólito de composição riodacítica. Na passagem do regime dúctil-rúptil a rúptil a alteração hidrotermal evoluiu de um estágio sódico-cálcico precoce, que foi ubíquo e dominado por albitização, escapolitização ou anfibolitização, para um estágio potássico, em que o K-feldspato e Cl-biotita foram os minerais diagnósticos, retomando novamente características sódico-cálcicas, de efeito local e marcadas tanto por assembleias de substituição como de preenchimento, compostas por albita, epidoto, apatita, turmalina e fluorita, para finalmente experimentar um estágio cálciomagnesiano, durante o qual se estabilizaram clinocloro/Fe-clinocloro, actinolita e carbonatos, além de talco subordinado. Nos granitoides, a albitização, epidotização e turmalinização são mais proeminentes e se contrapõem à escapolitização, biotitização, anfibolitização e magnetização, muito expressivas nos gabro/quartzodioritos, e à K-feldspatização, bem mais comum nas rochas metavulcânicas félsicas. O minério cupro-aurífero, cuja formação se iniciou nas fases finais da alteração potássica, foi controlado por estruturas rúpteis. Inicialmente representado por fraca disseminação de calcopirita–pirita–molibdenita em zonas alteradas por tremolita–actinolita, escapolita, albita e magnetita, progrediu para concentrações em veios e brechas compostos por calcopirita–bornita, com molibdenita, pirita e pentlandita mais restritas, que é a associação principal do corpo de minério. A estes sulfetos se juntaram apatita, escapolita, actinolita, epidoto, magnetita, martita, hematita, turmalina, calcita, gipsita ou fluorita como minerais de ganga. A suíte metálica característica da brecha sulfetada é Fe–Cu–Ni–ETR±Au±Zn±Y±Co±Se, com ƩETR alcançando 1030 ppm. Inclusões fluidas, aprisionadas em cristais de quartzo, escapolita, apatita e calcita dos diversos litotipos, acusam o envolvimento de pelo menos três fluidos aquosos. O fluido 1, simplificado pelo sistema H2O-NaCl-CaCl2±MgCl2, presente em todos os minerais hospedeiros, foi quente (450–500ºC) e hipersalino (até 58% em peso eq. de NaCl). Os halos de alteração bem como a mineralização são atribuídos à interação das rochas com este fluido, o qual experimentou resfriamento e diluição devidos provavelmente à mistura com águas superficiais. A entrada do fluido 2 (H2O-NaCl-FeCl2±MgCl2, com até 30% em peso eq. de NaCl) e do fluido 3 (H2ONaCl±KCl com até 18% em peso eq. de NaCl), menos quentes, se deu após o evento mineralizador. De circulação restrita e preservado apenas em cristais de quartzo e apatita, o fluido 2 poderia estar relacionado à intrusão dos diques máficos tardios, enquanto o fluido 3, teria circulado na área durante o alojamento do granito alcalino (1,88 Ga?), e registrado, à semelhança do fluido 1, em todos os minerais hospedeiros, só que em IF secundárias. A elevada salinidade e a falta de evidências de ebulição do fluido 1, somadas à presença de minerais ricos em Cl, sugerem que uma fonte exclusivamente magmática é pouco provável, abrindo possibilidade para indicar uma fonte mista, tendo os fluidos migrado através de sequências carbonático-evaporíticas e lixiviado grande parte do Na, Ca e Cl. Os dados mineralógicos, químicos e microtermométricos permitem caracterizar o fluido mineralizador como solução aquosa constituída por NaCl, CaCl2, KCl, FeCl2 e MgCl2(?), que também transportou P, B, F, Y, Ba, Sr, Rb e ETR, Cu, Ni, Co e espécies de S. Os depósitos Sossego e Visconde mostram similaridades quanto à natureza das rochas hospedeiras (metavulcânicas, intrusivas félsicas e máficas), aos tipos de alteração hidrotermal, em que o intenso metassomatismo sódico-cálcico assumiu caráter regional, à ocorrência principal dos corpos de minério em zonas brechadas e à suíte Fe–Cu–Ni–ETR±Au±Co como assinatura metálica característica do minério. Há, contudo, algumas diferenças, já que no depósito Visconde as acumulações de sulfetos são subeconômicas e a quantidade de magnetititos é bem menos expressiva. 2019-09-12T12:15:41Z 2019-09-12T12:15:41Z 2011-08-24 Dissertação CRAVEIRO, Gustavo Souza. Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás. Orientador: Raimundo Netuno Nobre Villas. 2011. 151 f. Dissertação (Mestrado em Geologia e Geoquímica) – Instituto de Geociências, Universidade Federal do Pará, Belém, 2011. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/11761. Acesso em:. http://repositorio.ufpa.br/jspui/handle/2011/11761 por Acesso Aberto application/pdf Universidade Federal do Pará Brasil Instituto de Geociências UFPA Programa de Pós-Graduação em Geologia e Geoquímica 1 CD-ROM
institution Repositório Institucional - Universidade Federal do Pará
collection RI-UFPA
language por
topic Geologia econômica
Província mineral de Carajás (PA)
Alteração hidrotermal
Inclusões fluídas
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS
GEOQUÍMICA E PETROLOGIA
spellingShingle Geologia econômica
Província mineral de Carajás (PA)
Alteração hidrotermal
Inclusões fluídas
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS
GEOQUÍMICA E PETROLOGIA
CRAVEIRO, Gustavo Souza
Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás.
topic_facet Geologia econômica
Província mineral de Carajás (PA)
Alteração hidrotermal
Inclusões fluídas
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS
GEOQUÍMICA E PETROLOGIA
description The Cu-Au Visconde deposit lies at the contact zone between the basement (>3.0Ga) and the Grão Pará Group (2.76 Ga) within the so-called Transition Domain of the Mineral Carajás Province. It is located at about 15 km east of the Cu-Au Sossego mine in the county of Canaã de Carajás, Pará state. Felsic metavolcanic rocks, probably belonging to that group, as well as granitic and mafic intrusions, dominate in the deposit and neighboring area. Subordinate ultramafic bodies occur within the mafic units. All these rocks are moderately to strongly hydrothermally altered and show varying degrees of deformation. Mafic dikes and a granitoid isotropic body, the latter probably related to the granitogenesis of 1.88 Ga, represent the last igneous activity in the area and cut the pre-existing rock package. Despite the mineralogical and textural changes, it was possible to infer a monzogranitic to granodioritic composition to the original granitoids largely based on the amounts of chess-board albite. Moreover, the scarcity of primary mafic minerals makes these granitoids similar to the Planalto Granite, which crops out approximately 7 km east of the deposit area. The mineral content and the partially preserved subophitic texture are suggestive that gabros and/or quartz diorites were potential protoliths of the mafic intrusions. On the other hand, the recognition of plagioclase, quartz and K-feldspar primary phenocrysts and the use of trace elements with limited mobility in the hydrothermal environment allowed discriminating a riodacitic composition for the protolith of the felsic volcanic rocks. Grading from ductile to brittle regimes, the hydrothermal alteration changed from early sodic-calcic assemblages, characterized by ubiquitous albitization, scapolitization or amphibolitization, to late potassic assemblages, in which the K-feldspar and Cl-biotite are the diagnostic minerals. Then the alteration restored its sodic-calcic character as indicated by albite, epidote, apatite, tourmaline and fluorite that replaced pre-existing minerals or filled open spaces. At last, it is recorded a calcic-magnesian stage during which clinochlore/Fe-clinochlore, actinolite, carbonate and subordinate talc were equilibrated. In the granitoids, albitization, epidotization and tourmalinization were the most prominent alteration processes, whereas scapolitization, biotitization, amphibolitization and magnetization were more remarkable in gabros/quartz diorites and K-feldspatization in the felsic metavolcanic rocks. The ore, whose formation began at the final stages of the potassic alteration, was essentially controlled by brittle structures. Initially represented by weak chalcopyrite, molybdenite and pyrite disseminations in the zones altered to tremoliteactinolite, scapolite, albite and magnetite, the mineralization evolved to sulfide concentrations in veins and breccias. Among the sulfides chalcopyrite, bornite, molybdenite are dominant, but pyrite and pentlandite also occur together with apatite, scapolite, actinolite, epidote, magnetite, martite, hematite, calcite, and gypsum or fluorite as the main gangue minerals. The typical metallic suite of the sulfide breccia is Fe–Cu–Ni–ETR±Au±Zn±Y±Co±Se, with ƩETR as high as 1030 ppm. Fluid inclusions trapped in quartz, scapolite, apatite and calcite crystals unraveled at least three aqueous fluids. Fluid 1, simplified by the system H2O-NaCl-CaCl2±MgCl2 and present in all host minerals, was hot (450–500ºC) and very saline (up to 58 wt% equivalent NaCl). The alteration and mineralization haloes should have resulted from the interaction of the host rocks with this fluid, which might have experienced cooling and dilution probably due to mixing with surficial waters. After the mineralization event, the deposit recorded the successive inflow of fluid 2 (H2O-NaCl-FeCl2±MgCl2, up to 30 wt % equiv. NaCl) and fluid 3 (H2O-NaCl±KCl, up to 18 wt % equiv. NaCl), both cooler than fluid 1. With a restrict circulation and preserved only in quartz and apatite crystals, fluid 2 might have been related to the intrusion of the late mafic dikes, whereas fluid 3 migration would have taken place in response to the emplacement of the alkali granite (1.88 Ga?), being trapped, similarly to fluid 1, in all host minerals, but as secondary IF. The high salinity and no evidence of boiling, coupled with the presence of Cl-rich minerals, suggest that a purely magmatic source is unlike for fluid 1. As an alternative, it is assumed a mixed source, involving the migration of magmatic or metamorphic fluids throughout carbonatic-evaporitic sequences from which Na, Ca and Cl have been largely leached. The mineralogical, chemical and microthermometric data allowed to characterize the mineralizing fluid as an aqueous solution consisting of NaCl, CaCl2, KCl, FeCl2 and MgCl2(?) that also carried P, B, F, Y, Ba, Sr, Rb and ETR, Cu, Ni and Co, besides S species. The Sossego and the Visconde deposits present similarities in terms of (1) the nature of the host rocks (felsic metavolcanics, granitoids, and mafic intrusions), (2) the types of alteration, highlighting the intense and widespread sodic-calcic metassomatism, (3) the occurrence of the major ore bodies in brecciated zones and (4) the Fe-Cu-Ni-ETR±Au±Co as the metallic signature of the ore. Regarding the main differences, the sub-economic sulfide accumulations and the smaller amounts of massive magnetitites of the Visconde deposit could be listed.
author_additional VILLAS, Raimundo Netuno Nobre
author_additionalStr VILLAS, Raimundo Netuno Nobre
format Dissertação
author CRAVEIRO, Gustavo Souza
title Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás.
title_short Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás.
title_full Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás.
title_fullStr Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás.
title_full_unstemmed Geologia, fluidos hidrotermais e origem do depósito cupro-aurífero Visconde, Província Mineral de Carajás.
title_sort geologia, fluidos hidrotermais e origem do depósito cupro-aurífero visconde, província mineral de carajás.
publisher Universidade Federal do Pará
publishDate 2019
url http://repositorio.ufpa.br/jspui/handle/2011/11761
_version_ 1787149039530147840
score 11.675088