Tese

Rejeito de caulim e caulim estéril amazônicos como fontes de Si e Al na obtenção de SAPO-34: síntese, otimização, influência de impurezas e aplicação em adsorção de corante

Kaolin waste from kaolin industry sedimentation ponds for paper and sterile kaolin or flint belonging to the same mine, in the Capim region, in northeastern Pará, were used in the synthesis of the SAPO-34 molecular sieve. The precursor materials and those produced were characterized by: DRX, FRX, TG...

ver descrição completa

Autor principal: PINHEIRO, Darllan do Rosário
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Pará 2021
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/13405
Resumo:
Kaolin waste from kaolin industry sedimentation ponds for paper and sterile kaolin or flint belonging to the same mine, in the Capim region, in northeastern Pará, were used in the synthesis of the SAPO-34 molecular sieve. The precursor materials and those produced were characterized by: DRX, FRX, TG-DSC-DTG, FTIR, ASEBET and MEV. First, the use of R-metakaolin as a precursor was evaluated, varying the SiO2 / Al2O3 ratio in the formulation of the SAPO-34 molecular sieve. The adjustment in the value of this molar ratio showed a positive effect on the formation of the desired zeolite, which showed formation of the CHA structure, in less time and with good thermal stability. In relation to the use of F-metakaolin, the effect of the amount of SDA and crystallization time (nucleation and crystal growth) on the formation of the CHA structure was evaluated and, later, that zeolitic product formed with less amount of SDA was used for a detail evaluation, in which the influence of Fe and Ti ions type impurities was studied. The results revealed a positive effect of the greater amount of SDA in the formation of SAPO-34 (CHA), but in a shorter time and, consequently, contribution in the Si distribution in the structure. When comparing the zeolitic products derived from F-metakaolin and a high purity kaolinitic pattern, the zeolitic product obtained from the kaolinitic sterile showed thermal resistance where the calcined product's DRX pattern maintained the CHA diffractometric profile, but with reduced crystallinity. It was also observed that before calcination, the zeolitic product obtained with F-metakaolin showed a smaller displacement to a 2θ (º) angle, indicating an increase in the interplanar distance with reference to the d101 plane, possibly due to interferences of the present impurities (Fe and ions). Ti), however after the calcination for decomposition of the SDA this displacement was not evidenced, thus indicating interference of the SDA used. That product considered the best, based on crystallochemical parameters, was used in the performance evaluation in methylene blue adsorption, which showed good adsorption capacity. In the evaluation of the adsorption kinetics, the pseudo-second order model (R2 = 0.998) was the one that best fit the experimental data. The optimization of the synthesis using tailings through the planning of Box-Behnken experiment and response surface methodology. It was concluded that the use of Amazon waste and/or flint kaolin is viable for the production of SAPO-34 zeolite (CHA).