/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Desenvolvimento de sensor piezorresistivo nanoestruturado impresso em 3D
The emergence of smart factories based on Industry 4.0 increases the automation and optimization of industrial processes in production chains. In this context, the integration between physical and digital systems depends on intelligent sensors, with greater sensitivity and integrated by the Internet...
Autor principal: | QUARESMA, Luciano José Barbosa |
---|---|
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2023
|
Assuntos: | |
Acesso em linha: |
https://repositorio.ufpa.br/jspui/handle/2011/15815 |
Resumo: |
---|
The emergence of smart factories based on Industry 4.0 increases the automation and optimization of industrial processes in production chains. In this context, the integration between physical and digital systems depends on intelligent sensors, with greater sensitivity and integrated by the Internet of Things (IoT). The literature indicates that piezoresistive sensors can be produced by additive manufacturing (AM) and nanostructured with
carbon nanotubes (NTCs), which generate a nanoelectromechanical system (NEMS) after its dispersion in the material. Thus, this work presents the development of a low-cost piezoresistive nanoelectromechanical sensor, produced by applying layers of NTCs on poly(acrylonitrile-butadiene-styrene) (ABS) parts printed by fused deposition modeling (FDM), integrable to the Industry 4.0 via IoT through ESP32 microcontrollers. For this,
a diaphragm-type sensor device with dimensions 17.8, 17.8 and 5.5 𝑚𝑚 was developed, whose sensor element deformation occurs by pressing a button. After MA printing of the device parts, carboxylic acid functionalized multi-walled CNTs (MWCNT-COOH) were dispersed by ultrasonic bath in a solution with a concentration of 1 𝑚𝑔/𝑚𝑙 of acetone and dimethylformamide, in a ratio of 1 ∶ 1 in volume, for coating the sensor elements in successive layers with an aerograph. After the deposition of five layers of CNTs on the
polymeric substrate, measurements of electrical resistance obtained with a picoammeter showed the percolation of the material in the second layer, with initial values above 10 𝑇 Ω and final values below 100 𝑘 𝑂𝑚𝑒𝑔𝑎 after the fifth layer, which occurs by the formation of conduction channels originating from the random arrangement of CNTs on the ABS surface, as observed by Field Emission Scanning Electron Microscopy (FEG-SEM). After that, the electrical resistance was measured during pressure cycles with progressive load and with maximum load, in which the sensor elements presented an operating range of 139.97 ± 0.46 to 363.25 ± 0.39 𝑘𝑃 𝑎. In the first test, the minimum sensitivity of 0.1 % and maximum sensitivity of 1.16 %. In the second, the highest average sensitivity was 0.63 ± 0.04 % and the lowest average response and recovery times were 0.55 ± 0.29 𝑠 and 12.29 ± 1.44 𝑠, respectively. Raman spectroscopy showed the overlapping of the signals of each material, in particular the ABS band at 1447 𝑐𝑚−1 which appears prominently between the NTCs 𝐷 and 𝐺 bands. Based on the piezoresistive response that the material presented from the NEMS generated by the deposition of NTCs on ABS, this concept of a load cell can be integrated into an ESP32 microcontroller board, making it an intelligent device with potential application in industrial systems. 4.0. |