/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Síntese e Caracterização da Zeólita Ferrierita (FER) a partir de resíduo caulinítico: a influência dos parâmetros do processo
The present work addresses the synthesis of ferrierite zeolite from kaolin residue from the Amazon region. Ferrierite is a high-silica zeolite with a topology considered complex due to its structure, which presents a three-dimensional arrangement of atoms with intersecting perpendicular channels. It...
Autor principal: | VILHENA, Thefeson Oliveira |
---|---|
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2024
|
Assuntos: | |
Acesso em linha: |
https://repositorio.ufpa.br/jspui/handle/2011/16338 |
Resumo: |
---|
The present work addresses the synthesis of ferrierite zeolite from kaolin residue from the Amazon region. Ferrierite is a high-silica zeolite with a topology considered complex due to its structure, which presents a three-dimensional arrangement of atoms with intersecting perpendicular channels. It is widely used in catalysis, adsorption, ion exchange, among other processes. Its synthesis from alternative materials, such as kaolin residue, offers a recyclable and cost-reducing approach. Thus, kaolin residue from the Amazon was used as a source of Si and Al for the synthesis of ferrierite. In this context, thermal treatment of the kaolin residue was carried out to obtain metakaolinite for the formation of the reaction mixture. Since the Si/Al ratio of metakaolinite was insufficient to achieve the objectives, silica gel was added to the reaction mixture, along with other reagents, sources of other necessary elements/constituents, such as compounds with compensating cations (Na+ and K+) and a structural directing agent (ethylenediamine). The methodology of the IZA (International Zeolite Association) was used for the synthesis of ferrierite, and to reduce the synthesis time, an aging step of the silica gel solution was added to make it more reactive. The hydrothermal process took place at a constant temperature of 180°C. The research investigates the influence of different process parameters, such as aging time and synthesis time of ferrierite, as well as the combined use of different compensating cations. The products were characterized by X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermal analysis. The results showed that ferrierite was effectively synthesized from 48 hours onwards. However, with the extension of the synthesis time, ferrierite with higher crystallinity was obtained. The use of different compensating cations also led to the formation of the ferrierite phase with the prolonged synthesis time. Furthermore, the research highlighted the importance of the aging step of the silica gel solution, which proved to be very effective for the synthesis of ferrierite zeolite. |