/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Formação de heteroestruturas compostas por microtubos de Cu/Cu2O/CuO decorados com nanocristais de CoO
A particularly important class of micro/nanostructured materials is that of transition metal oxides. In this work, copper and cobalt oxides are used to obtain micro/nanostructures. Copper (II) oxide (CuO) and copper (I) oxide (Cu2O) are p-type semiconductors, widely studied due to their peculiar cha...
Autor principal: | SANTOS, Suzilene Vasconcelos dos |
---|---|
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2024
|
Assuntos: | |
Acesso em linha: |
https://repositorio.ufpa.br/jspui/handle/2011/16445 |
Resumo: |
---|
A particularly important class of micro/nanostructured materials is that of transition metal oxides. In this work, copper and cobalt oxides are used to obtain micro/nanostructures. Copper (II) oxide (CuO) and copper (I) oxide (Cu2O) are p-type semiconductors, widely studied due to their peculiar characteristics and potential technological applications. Specifically, copper (Cu) microwires with approximately 50 μm in diameter and 4 cm in length, extracted from discarded cellphone earphones, were subjected to thermal treatments at 600°C with different synthesis parameters to obtain CuO microtubes. On the other hand, cobalt acetate was used in the synthesis of nanoparticles through the chemical method called thermal decomposition, which uses organometallic salts in organic solvents, being a suitable method for the synthesis of CoO nanostructures. Metallic cobalt and its oxides have been intensively studied due to numerous applications enhanced by their properties. CoO nanoparticles exhibit instability in the hexagonal close-packed Wurtzite structure (hcp - space group P63mc). This implies that, depending on the synthesis parameters, phase transition can occur, that is, from CoO-hcp to CoO-fcc (face-centered cubic phase - space group Fm3m), which is considered the most stable phase for CoO. However, in order to obtain a hierarchical structure of CuO microtubes decorated with CoO nanoparticles, this work uses different synthesis methodologies to produce a micro-nano-hierarchical structure. In this study, X-ray diffraction was used to identify the crystalline structures present in the microwires and nanoparticles, highlighting the influence of the time parameter on the phase transition of both structures. The morphological characterization of the samples was performed using scanning electron microscopy (for the microwires) and transmission electron microscopy (for the nanoparticles). Raman spectroscopy was also employed to obtain information about the sample surfaces. With these characterization techniques, it was possible to determine the elemental and structural composition of the microtubes and nanoparticles composed of copper and cobalt oxides, as well as to evaluate the influence of the laser on the nanoparticle samples. Thus, a Cu/Cu2O/CuO heterostructure with CoO monocrystals on the surface was developed, presenting potential sensory properties. |