Dissertação

Modelo teórico de sensores ópticos baseados em fibras com grade de Bragg

By applying an external stress to an optical fiber its refractive index can change due to the photoelastic effect. When the optical fiber contains a Bragg grating inscribed in its core besides of the refractive index their spacial period changes too, allowing its application as high sensitive opt...

ver descrição completa

Autor principal: CUNHA, José Renato Ferreira Alves da
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2014
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/5062
Resumo:
By applying an external stress to an optical fiber its refractive index can change due to the photoelastic effect. When the optical fiber contains a Bragg grating inscribed in its core besides of the refractive index their spacial period changes too, allowing its application as high sensitive optical sensors for measurements of temperature and stress. From the theoretical point of view, up to date the operation of sensors using optical fiber with Bragg gratings (FBG) is explained by the photoelastic effect through appropriate components of the photoelastic tensor but for germanosilicated optical fibers only, which may to represent limitations to understand the responses of other classes of FGB used as optical sensors. In this work we show an alternative theoretical formulation for the studies of the operation properties of an optical sensor of longitudinal stress based on optical fiber with FBG, which do not depends from previous knowledge of the components of the photoelastic tensor, but just depends on the refractive index of the core, Poisson’s ratio, and relative deformation. The results shown good agreement with the literature and experimental data, allowing to estimate other features related with the reflectivity of the FGB.