Dissertação

Propriedades magnéticas de nanoestruturas de metais de transição 3d em superfícies de Pd

Motivated by experimental studies of 3d transitional metal monolayers on Pd surfaces, we studied the complex magnetism of nanostructures, intermixed or adsorbed, on metallic surfaces, via ab initio calculations. We used the RS-LMTO-ASA method (Real Space - Linear Muffin-Tin Orbitals - Atomic Sphere...

ver descrição completa

Autor principal: RODRIGUES, Débora Carvalho de Melo
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2014
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/5078
Resumo:
Motivated by experimental studies of 3d transitional metal monolayers on Pd surfaces, we studied the complex magnetism of nanostructures, intermixed or adsorbed, on metallic surfaces, via ab initio calculations. We used the RS-LMTO-ASA method (Real Space - Linear Muffin-Tin Orbitals - Atomic Sphere Approximation), which is based on the Density Functional Theory and has been implemented to calculate non-collinear magnetic structures. With this purpose, we investigated intermixed metallic (Cr, Mn, Fe, Co and Ni) nanostructures and alloys (2 x 2) in Pd (110) surface and also adsorbed nanostructures on Pd (111). For intermixed nanostructures in Pd (110), we analyzed the behavior of the spin and orbital magnetic moments as function of the number of first neighbors and the valence number of the 3d metals. We verified a collinear magnetism for most of the cases, except for the Cr and Mn geometrically frustrated structures, which present noncollinear magnetic configurations. For Cr nanowires adsorbed on Pd (111), we obtained a collinear antiferromagnetic configuration for chains with up to 9 atoms. For the nanowire with 10 atoms of Cr, the magnetic ordering is antiferromagnetic canted. For two dimensional Cr nanostructures adsorbed on Pd (111), we obtained complex noncollinear magnetic structures, with different chiralities.