/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Desenvolvimento e caracterização acústica de painéis multicamadas unifibra, multifibras e mesclados, fabricados a partir de fibras vegetais
In a time when high noise levels are part of people’s daily lives, the search for noise control is not only evident, but providential. Currently, noise pollution, to a worldwide level, is not more serious than air and water pollution only. In Brazil, the situation is not different because it is esti...
Autor principal: | BASTOS, Leopoldo Pacheco |
---|---|
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2014
|
Assuntos: | |
Acesso em linha: |
http://repositorio.ufpa.br/jspui/handle/2011/5564 |
Resumo: |
---|
In a time when high noise levels are part of people’s daily lives, the search for noise control is not only evident, but providential. Currently, noise pollution, to a worldwide level, is not more serious than air and water pollution only. In Brazil, the situation is not different because it is estimated that more than 15 million people have some kind of hearing loss degree due to this environmental problem. Acoustic devices such as panels, barriers, etc., when of high efficiency, generally, are of difficult acquisition due to high costs, turning, in many cases, their use impracticable, mainly for limited budget small-sized companies. Thus, alternative solutions, starting with new acoustic materials that are less costly and have satisfactory performance, emerge as a great option. Considering the global environmental trends, the use of vegetable fibers is a great opportunity to aggregate value, and technological development for agricultural producing countries, like Brazil. Beyond that, such fibers are easy to get, exist in abundance, are non toxic and derive from renewable sources. This work will present the methodology of development of panels made from
vegetable fibers (açaí, coconut, sisal and palm) and binding agent based on acrylate and water, as well as the methodology used to characterize them acoustically on a scale model reverberant chamber, based on ISO 354/1999. These panels are made of pressed layers of fibers interspersed with layers of binding agent. The fibers are extracted, washed, dried, and
treated when necessary, while the binding agent is obtained commercially. The panels sound absorption data are obtained through a four channel frequency analyzer using the noise interruption method. Comparison of results between alternative and conventional material based panels allows to the conclusion that the acoustical performance shown by some newly
developed panels are very satisfactory, since their sound absorption coefficients were compatible, and in some cases, higher to those presented by conventional materials in a given frequency range. Finally, a numerical-experimental comparison is performed in order to evaluate the influence of sisal absorbing panels over the acoustics characteristics of a small classroom. |