Dissertação

Migração em profundidade usando a solução numérica da equação da eiconal

In the last years we have seen an increasing interest in seismic imaging algorithms in order to obtain better informations about the earth interior. The Kirchhoff migration method is very useful for determining the position of seismic reflectors, if is known the seismic wave velocity model and the t...

ver descrição completa

Autor principal: LUZ, Samuel Levi Freitas da
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2014
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/5982
Resumo:
In the last years we have seen an increasing interest in seismic imaging algorithms in order to obtain better informations about the earth interior. The Kirchhoff migration method is very useful for determining the position of seismic reflectors, if is known the seismic wave velocity model and the traveltimes are well determined through the earth model. The traveltime calculation is a necessary step for stacking the seismic data by means of the Kirchhoff migration operator. In this work the traveltimes are obtained by solving the eiconal equation of the ray theory. At first, the theory of Kirchhoff migration is reviewed, by considering depth migration in heterogeneous media with arbitrary curved reflectors. Secondly, the numerical solution of the eiconal equation is presented for transmited, diffracted and head waves. There offer, the depth migration algorithm is presented, must makes use of traveltimes obtained by the eiconal equation. Finally, the developed migration algorithm is applied to synthetic models, providing a very good image resolution in comparison with the conventional ray tracing migration methods, even in the presence of random or coherent (multiple reflections) noise.