Tese

Enriquecimento ambiental reduz as alterações astrocitárias e a progressão da doença prion em modelo murino: ensaios morfométricos, estereológicos e comportamentais

It is well established that a sedentary lifestyle is a risk factor for a number of chronic diseases, including Alzheimer's disease. The neuropathology of Alzheimer's disease is characterized by amyloid deposits, neuronal loss, reactive gliosis, and vacuolization of the neuropil. Prion disease has be...

ver descrição completa

Autor principal: TORRES NETO, João Bento
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Pará 2015
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/6826
Resumo:
It is well established that a sedentary lifestyle is a risk factor for a number of chronic diseases, including Alzheimer's disease. The neuropathology of Alzheimer's disease is characterized by amyloid deposits, neuronal loss, reactive gliosis, and vacuolization of the neuropil. Prion disease has been widely used as an experimental model for studying cellular and molecular aspects of chronic neurodegeneration much similar to that described in Alzheimer's disease. The impoverished environment of standard laboratory cages have been used to mimic a sedentary life whereas enriched environment has been used to mimic an active lifestyle. To test the hypothesis that an enriched environment can help to slow down the time course of chronic neurodegeneration associated with prion disease we induced prion disease in twenty Swiss albino female mice which had been housed at six months of age in an enriched environment (EE) or in a standard (SE) environment for five months. After this period bilateral stereotactic intracerebral injection of normal (NBH, n = 10) or infected brain homogenate (ME7, n = 10) were done. Infected brain homogenate was obtained from mice with clinical signs of terminal prion disease. The injected animals returned to their cages and housing conditions and grouped as follow: SE = NBH 5, EE = NBH 5, ME7 SE = 5, ME7 EE = 5. After three weeks post-injections the burrowing test was initiated. Burrowing is a sensitive task to hippocampal damage. 18 weeks after inoculation memory tests of object recognition was carried out. After behavioral tests animals were euthanized and their brains were histologically processed targeting astrocytic immunostaining of areas of interest. The progressive reduction of the activity of burrowing began in the thirteenth week after injection in group ME7 SE but only in the fifteenth week in ME7 EE group. The ability to recognize the displaced object in spatial memory test was impaired in ME7 SE group but remained normal in the other experimental groups. The test of discrimination between the new object and the family revealed no abnormalities. Quantitative analysis of GFAP immunostained cells were performed in the dorsal stratum radiatum of CA3 and in the polymorphic layer of the dorsal dentate gyrus. The stereological estimates of the total number of astrocytes and the volume of the cell body revealed that the number of astrocytes did not change but a significant hypertrophy occurs in CA3 cell bodies of ME7 SE and ME7 EE groups as compared to their respective controls. The average volume of the cell bodies of the ME7 EE group was smaller than that of the group ME7 SE. However similar analysis applied to the polymorphic layer revealed a significant increase in the number of astrocytes in the ME7 SE group in relation to NBH SE group and in ME7 EE compared to NBH EE. The volume of the cell body was also significantly higher in ME7 groups compared to their respective control groups. The three-dimensional morphometric analysis revealed significant increase in volume and surface area of the segments of astrocytic trees in diseased groups compared to controls. Environmental enrichment reduced swelling observed in the branches of ME7 group and increased the number of intersections of the distal branches in NBH EE group relative to NBH SE and the proximal branches in the group ME7 EE compared with ME7 SE. The use of cluster analysis and discriminant allowed the identification of morphometric parameters that contributed most to the distinction between the groups. To test the hypothesis that there are subfamilies of morphologically distinct astrocytes within each experimental group, we applied cluster and discriminant analysis to each experimental group and these analysis resulted in the formation of two distinct families in NBH SE group, three families in NBH EE and ME7 EE groups and four families in the ME7 SE group. The molecular and cellular changes, which lead to the formation of new families of astrocytes, and to the neuroprotection associated with an enriched environment slowing down the progression of the prion disease, remain to be investigated.