Dissertação

Obtenção e caracterização de nanoemulsão óleo em água a partir de óleo de açaí (Euterpe oleracea M.)

Nanoemulsions have been proposed as an option for drug delivery current systems and increasing interest due to several advantages when compared with traditional formulations. Vegetable oils are considered pharmaceutical ingredients of great value as lipid matrix of these systems, such as oil açaí, o...

ver descrição completa

Autor principal: CONTENTE, Denise Maria Loureiro
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2017
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/8760
Resumo:
Nanoemulsions have been proposed as an option for drug delivery current systems and increasing interest due to several advantages when compared with traditional formulations. Vegetable oils are considered pharmaceutical ingredients of great value as lipid matrix of these systems, such as oil açaí, of Amazonian origin oil, which has a number of medicinal benefits such as antioxidant and moisturizing activity, and biocompatibility, increases skin elasticity and acts as a physical barrier. The objective of this study was to obtain nanoemulsion O / W, from açaí oil, surfactant and water, through the phase inversion temperature method for topical use. Açaí oil was characterized by physical-chemical tests and on the profile of fatty acids by gas chromatography (GC), spectrometry in the infrared (FT-IR) and thermal analysis by thermogravimetry (TG) and differential scanning calorimetry (DSC). The surfactant, ketoconazole and their binary mixtures with oil açaí were evaluated by DSC. Obtained nanoemulsions making use of açaí oil, BrijTM CS20, water and ketoconazole. The characterization of nanoemulsions was performed on the droplet size, polydispersity index (PI), the zeta potential (PZ), morphology and encapsulation efficiency (EE). The açaí oil showed acid value (3.78 mg KOH / g), iodine value (71 gl2 / 100g), saponification number (199 mg KOH / g), refractive index (1.470) and density (0,950g / ml). In GC analysis showed 68.05% of unsaturated fatty acids, being 47.58% oleic acid. Oxidative stability of açaí oil Rancimat was about 11.79 hours. The FT-IR spectrometric analysis confirmed bands suggestive of unsaturated fatty acids and thermal analysis it was observed that the thermal degradation occurs above 200 ° C. The combinations of raw materials analyzed by DSC was observed that the incorporation of ketoconazole with açaí oil. The nanoemulsion B10 with 0.5% ketoconazole showed 98.31% EE. The transmission electron microscopy showed droplets with spherical shape and after study of PZ (-25.53 ± 10.04 mV), PI (0.37 ± 0.04) and size (128.53 nm ± 10.04) by 30 days, nanoemulsion showed little variation. Thus, it can be said that açaí oil has the potential to be used as a pharmaceutical ingredient can be used as oil phase nanoemulsions loaders of fat-soluble substances.