Dissertação

Controle energeticamente eficiente de múltiplos saltos para redes de sensores sem fio heterogêneas utilizando lógica fuzzy

This study presents a centralized control to elect appropriate Cluster Heads (CHs), assuming three levels of heterogeneity and multi-hop communication between Cluster Heads. The centralized control uses the k-means algorithm, responsible for the division of clusters and Fuzzy Logic to elect the Clus...

ver descrição completa

Autor principal: SILVA, Alexandre Márcio Melo da
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2017
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/9016
Resumo:
This study presents a centralized control to elect appropriate Cluster Heads (CHs), assuming three levels of heterogeneity and multi-hop communication between Cluster Heads. The centralized control uses the k-means algorithm, responsible for the division of clusters and Fuzzy Logic to elect the Cluster Head and selecting the best route of communication between elected. The results indicate that the proposal offers great advantages, allowing us to select the most suitable nodes for group leaders at each round based on the Fuzzy System values, and also the use of Fuzzy Logic as a decision tool to implement multiple hops between CHs, since it minimizes the power dissipation of the selected CHs more distant from the collection point. The insertion of three levels of heterogeneity,corresponding to normal, advanced and super sensors, contributes considerably to increasing the period of network stability. Another great contribution obtained from the is the use of a central control in base station (BS) with advantages over local information processing in each node, a process usually found in traditional algorithms for electing CHs. The proposed solution proved that the election of the more efficient CH, considering its location and energy levels discrepancies, and also, the inclusion of new heterogeneity levels, allows to increase the networkstability period, ie, the period that the network is fully functional, greatly increasing the useful lifetime in heterogeneous WSN.