/img alt="Imagem da capa" class="recordcover" src="""/>
Tese
Permo-triássico da Bacia do Parnaíba, Norte do Brasil: implicações paleoambientais, paleoclimáticas e paleogeográficas para o Pangea ocidental
The Permo-Triassic was marked by the great mass extinction of geological Earth history with losses of 90-95% of marine and terrestrial species. These were related to paleogeographic and paleoclimatic changes in part assigned to catastrophic events. In the end of Permian, arid conditions prevailed ar...
Autor principal: | ABRANTES JÚNIOR, Francisco Romério |
---|---|
Grau: | Tese |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2017
|
Assuntos: | |
Acesso em linha: |
http://repositorio.ufpa.br/jspui/handle/2011/9071 |
Resumo: |
---|
The Permo-Triassic was marked by the great mass extinction of geological Earth history with losses of 90-95% of marine and terrestrial species. These were related to paleogeographic and paleoclimatic changes in part assigned to catastrophic events. In the end of Permian, arid conditions prevailed around the world as a consequence of eustatic sea level fall added to disappearance of glacial areas and large-scale closed basins multiplication. These conditions combined with the intense continentalization of Pangea supercontinent led to desertification with the development of large desert and sabka complexes. In the northern of Brazil the records of these events are found in intracratonic basins, particularly in the Parnaíba Basin. This is represented by siliciclastic-evaporitic succession from Balsas Group compound by Pedra de Fogo, Motuca and Sambaíba formations. It was recognized seven facies associations: (1) Lacustrine mudflat dominated, represented by greenish/reddish gray laminated mudstones interbedded with fine-grained sandstones and great chert content; (2) Marginal dune fields consisting of planar cross-stratified beds of fine- to medium-grained sandstones; (3) Perennial playa lake consisting dominantly of red laminated mudstones with discontinuous layers of sigmoidal sandstones; (4) Saline mudflat / Saline pan represented by reddish laminated mudstones interbedded with lenses of gypsum, limestone, and marl; (5) Sand sheet laterally consisting of continuous fine- to medium-grained sandstones with convoluted lamination, synsedimentary faults/microfaults and adhesion structures; (6) Dune fields formed by fine- to medium-grained sandstones with large-scale cross-bed sets; and (7) Volcanic plain, consisting of basalts interbedded with sandstones. During Middle Permian, the alternating between continental sabkha mudflats and shallow to deep lacustrine phases occurred in large plains in the tropical zone of western to central Pangea (AF1). This cyclicality reflected the seasonal wet and dry phases triggered by changes in the water level, low subsidence rate and narrow accommodation space. The prolonged dry stages were characterized by the advance of the marginal dune fields (AF2) as well as by establishment of large dry mudflats. In the Upper Permian, the continuous amalgamation process of supercontinent Pangea led to the uplift of central and equatorial regions resulting in the retreat of epicontinental seas. However, there were the appearance of large-scale closed basins (AF3) and extremely acid saline ephemeral lakes with saline mudflats and pans (AF4). Petrographically, the evaporate from saline pans display primary features of precipitation to eodiagenetic of gypsum and anidrite posteriorly affected by telodiagenetic processes. The extreme aridity conditions favored the decline of these great lakes and the definitive implementation of Triassic Erg. Sand sheets occurred in the marginal portion of this Erg, containing abundant ephemeral ponds and humid regions (AF5). Large dune fields advancing as consequence of the sediment availability increase, while deflation surfaces were produced by partial removal of sediment supply (AF6). The total interruption of sediment supply to the Erg in the Late Triassic provided an extreme and regional deflation surface overlapping by eojurassics volcanic rocks (AF7). The deformational analysis of the studied succession identified three different synsedimentary deformational levels at least: (I) brittle-ductile hybrid features in the contact zone between the Motuca and Sambaíba formations; (II) folds and medium-sized convolution in the middle portion of the eolic strata of Sambaíba Formation; (III) Injectites in the intertraps sandstones from Mosquito Formation. These three levels of deformed layers are separated by non- or slightly-deformed strata intervals, laterally may show a gradual increase of deformation intensity. The deformation level I occurs in the contact zone between Motuca and Sambaíba formations represented by a set of hybrid (brittleductile) features. Lateral continuity of this interval for hundreds of kilometers added to the increase in the deformation degree in the Riachão area. Furthermore, the anomalous concentration of trace elements (Cr, Co, Cu, Mn, Au, Pd, and Pt) are consistent with earthquakes of high magnitude probably product of meteoritic impact (Riachão structure). The level of strain II is marked by a set of inharmonious folds in the middle part of Sambaiba Formation. These are originated by autociclic processes related to hidroplastic deformation of sediments of sediments by dunen/draas migration and overweight. The third interval it is composed by sandstone dikes in an eojurassic volcanic rocks of Mosquito Formation. These dams were formed by hydraulic injections of sand leading to a thermal gradient increase induced by basic magmatic activities during the pre-rift phase in the Western Pangea. |