/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Análise mecânica e microestrutural da interação do bambu com o concreto
Several materials have been used in construction, steel and concrete being the most used. However, such materials present high production costs and generate great impacts to the environment. The purpose of this research is to analyze the interaction between concrete and bamboo of the species Dendroc...
Autor principal: | SALGADO NETO, Francisco de Souza |
---|---|
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2018
|
Assuntos: | |
Acesso em linha: |
http://repositorio.ufpa.br/jspui/handle/2011/9859 |
Resumo: |
---|
Several materials have been used in construction, steel and concrete being the most used. However, such materials present high production costs and generate great impacts to the environment. The purpose of this research is to analyze the interaction between concrete and bamboo of the species Dendrocalamus giganteus as well as to verify the potential of the annealed wire as a reinforcement of bond between the above-mentioned materials, justified by the search for alternative and renewable materials concomitantly with the defense of sustainability. The experimental schedule is divided into 3 stages: morphological, physical and mechanical characterization of bamboo; concrete dosing; and study of bamboo concrete interaction, analyzing the use of two types of wrapping wire on the bamboo surface as a mechanism of bond reinforcement: single spiral and double spiral, from the determination of the bond strength at 28 days for each case, of the load x displacement behavior and the microstructural analysis of the concrete bamboo interaction. The fixed factors were: compressive strength of the concrete (28 MPa), 200 mm is the length of bonded interface, bamboo sticks with rectangular section of 20 mm x 10 mm. All the results obtained were analyzed by statistical tests and it was verified that the presence of the node and the use of wire increases the bond strength by 42% and at least 25%, respectively. |