Dissertação

Economia de energia elétrica em ambientes inteligentes baseada no reconhecimento de atividades do usuário

Nos últimos anos, o consumo de energia elétrica tem aumentado gradativamente em todos os setores, especialmente em ambientes residenciais. Esse aumento ocorre, principalmente, devido ao surgimento de novos aparelhos elétricos. Por este motivo, várias soluções têm sido propostas pelo governo e pela i...

ver descrição completa

Autor principal: Lima, Wesllen Sousa
Outros Autores: http://lattes.cnpq.br/4666827294263489
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2015
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/4073
Resumo:
Nos últimos anos, o consumo de energia elétrica tem aumentado gradativamente em todos os setores, especialmente em ambientes residenciais. Esse aumento ocorre, principalmente, devido ao surgimento de novos aparelhos elétricos. Por este motivo, várias soluções têm sido propostas pelo governo e pela indústria na tentativa de minimizar o consumo de energia elétrica em residências. Dentre as abordagens propostas, destacam-se a conscientização das pessoas, uso de fontes de energia renováveis e a criação de aparelhos inteligentes. Além disso, o uso de Tecnologias da Informação e Comunicação (TICs) em ambientes inteligentes tem sido visto como uma alternativa interessante para lidar com este problema. A ideia é que as residências sejam instrumentadas com sensores e atuadores com objetivo de monitorar as atividades das pessoas e, por meio disso, gerenciar o consumo de energia elétrica com base nos seus hábitos. Nesse contexto, este trabalho propõe e valida um método capaz de economizar energia com base nas atividades dos usuários em um ambiente inteligente utilizando técnicas de inteligência artificial. O objetivo é identificar os aparelhos relacionados às atividades dos usuários e fazer recomendações ao longo da execução dessas atividades, evitando tais desperdícios. O método proposto, denominado de AAEC (Activity-Appliance-Energy Consumption), é capaz de analisar um conjunto de dados coletados pelos sensores disponíveis no ambiente, reconhecer automaticamente as atividades dos usuários e recomendar ações que visam a contenção de gastos. Testes feitos com uma base de dados real mostram que o método proposto é capaz de economizar até 35% de energia elétrica. De maneira geral, a inclusão do método AAEC se mostrou uma boa solução para auxiliar as pessoas a poupar energia sem que haja esforço na mudança de comportamento do indivíduo, contribuindo para o uso consciente de energia e no desenvolvimento de uma sociedade sustentável.