/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Segmentação, classificação e quantificação de bacilos de tuberculose em imagens de baciloscopia de campo claro através do emprego de uma nova técnica de classificação de pixels utilizando máquinas de vetores de suporte
A tuberculose (TB) é uma doença contagiosa causada pelo Mycobacterium tuberculosis que afeta, principalmente, os pulmões e atinge mais de 8,8 milhões de pessoas em todo o mundo. Embora o número de casos de doenças e mortes por TB tenham caído ao longo dos últimos anos, essa doença ainda continua sen...
Autor principal: | Xavier, Clahildek Matos |
---|---|
Outros Autores: | http://lattes.cnpq.br/6870670168555921 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2015
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/4387 |
Resumo: |
---|
A tuberculose (TB) é uma doença contagiosa causada pelo Mycobacterium tuberculosis que afeta, principalmente, os pulmões e atinge mais de 8,8 milhões de pessoas em todo o mundo. Embora o número de casos de doenças e mortes por TB tenham caído ao longo dos últimos anos, essa doença ainda continua sendo um grave problema de saúde nos países em desenvolvimento. Atualmente, como exames iniciais para o diagnóstico da TB são usados os métodos de baciloscopia de campo claro e baciloscopia de fluorescência. O primeiro é mais usado em países em desenvolvimento, devido ao baixo custo; o segundo é o método preferencial em países desenvolvidos por ser mais sensível. Entre os vários desafios para o
controle dessa doença, está o desenvolvimento de um método rápido, eficiente e de baixo custo para o diagnóstico da TB. O processo de diagnóstico de baciloscopia de campo claro é demorado, manual e propenso a erros, fazendo com que haja uma alta taxa de falsos negativos. Várias técnicas de reconhecimento de padrão em imagens baciloscópicas de microscopia de campo claro têm sido desenvolvidas para o reconhecimento e contagem dos bacilos. Este trabalho descreve um novo método para segmentação de bacilos da tuberculose em baciloscopia de campo claro. O método proposto utiliza um classificador constituído por uma máquina de vetores de suporte. O diferencial do mesmo em relação a outros trabalhos está nas variáveis selecionadas para a entrada do classificador. Essas variáveis foram
selecionadas a partir de quatro espaços de cor: RGB, HSI, YCbCr e Lab. Investigou-se tanto características individuais, como subtrações de características de um mesmo espaço de cor e de espaços de cores diferentes, num total de 30 características. As melhores características foram selecionadas utilizando-se a técnica de seleção escalar de características. Alcançou-se uma sensibilidade de 94%. No entanto, novas etapas para a redução de ruído são necessárias para minimizar os erros de classificação. |