/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Um Descritor baseado em análise local de cor para busca de imagens em grandes cole ções
Os avanços em tecnologia multimídia ocasionou um grande crescimento da quantidade de imagens digitais, em consequência disso, cresceu também a necessidade de métodos mais eficazes e eficientes para armazenar e recuperar esse conteúdo multimídia. A maioria dos métodos propostos na literatura alcan...
Autor principal: | Kimura, Petrina de Assis da Silva |
---|---|
Outros Autores: | http://lattes.cnpq.br/7335071191732324 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2016
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/4850 |
Resumo: |
---|
Os avanços em tecnologia multimídia ocasionou um grande crescimento da quantidade de imagens
digitais, em consequência disso, cresceu também a necessidade de métodos mais eficazes e
eficientes para armazenar e recuperar esse conteúdo multimídia. A maioria dos métodos propostos
na literatura alcançam altos níveis de eficiência e eficácia (a cima de 70% de precisão),
entretanto grande parte delas executam experimentos usando bases de imagens pequenas (menos
de 10.000 imagens), previamente classificadas em categorias bem de nidas, facilitando assim a
tarefa de busca e, consequentemente aumentando os níveis de precisão dos descritores avaliados.
Por outro lado, quando esses métodos são avaliados em grandes coleções heterogêneas, o nível de
precisão e relativamente baixo. Pensando nesse problema, esta dissertação propõe o descritor Local
Color Pixel Classication (LCPC), um método baseado em análise local para busca em grandes
bases de imagens. A abordagem proposta extrai características de cor, classificando os pixels como
borda ou interior, usando o mesmo esquema de classificação do método Border/Interior Pixel Classication (BIC), através de um esquema de particionamento simples, mas muito eficiente e eficaz
para incorporar informações espaciais sobre o conteúdo visual da imagem.
Experimentos foram conduzidos usando três bases de imagens, incluindo uma com mais de
100.000 imagens coletadas da Web. Os resultados obtidos mostram que a abordagem proposta e
bastante superior quando comparado com outros descritores visuais previamente apresentados na
literatura, com ganhos em precisão média de 51% até 105% |