Dissertação

Multi-objective optimization in learn to pre-compute evidence fusion to obtain high quality compressed web search indexes

Máquinas de busca web para a web indexam grandes volumes de dados, lidando com coleções que muitas vezes são compostas por dezenas de bilhões de documentos. Métodos aprendizagem de máquina têm sido adotados para gerar as respostas de alta qualidade nesses sistemas e, mais recentemente, há métodos...

ver descrição completa

Autor principal: Pal, Anibrata
Outros Autores: http://lattes.cnpq.br/7698547811883708
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2016
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/5128
Resumo:
Máquinas de busca web para a web indexam grandes volumes de dados, lidando com coleções que muitas vezes são compostas por dezenas de bilhões de documentos. Métodos aprendizagem de máquina têm sido adotados para gerar as respostas de alta qualidade nesses sistemas e, mais recentemente, há métodos de aprendizagem de máquina propostos para a fusão de evidências durante o processo de indexação das bases de dados. Estes métodos servem então não somente para melhorar a qualidade de respostas em sistemas de busca, mas também para reduzir custos de processamento de consultas. O único método de fusão de evidências em tempo de indexação proposto na literatura tem como foco exclusivamente o aprendizado de funções de fusão de evidências que gerem bons resultados durante o processamento de consulta, buscando otimizar este único objetivo no processo de aprendizagem. O presente trabalho apresenta uma proposta onde utiliza-se o método de aprendizagem com múltiplos objetivos, visando otimizar, ao mesmo tempo, tanto a qualidade de respostas produzidas quando o grau de compressão do índice produzido pela fusão de rankings. Os resultados apresentados indicam que a adoção de um processo de aprendizagem com múltiplos objetivos permite que se obtenha melhora significativa na compressão dos índices produzidos sem que haja perda significativa na qualidade final do ranking produzido pelo sistema.