Dissertação

Realimentação de relevância em buscas de imagem usando programação Genética

Produtos de moda são itens difíceis de ser anotados e descritos por texto, fazendo-se necessário o uso de imagens para a realização de buscas em web sites de e-commerce. Tais produtos detém grande apelo visual, ou seja, a apresentação de imagens referentes aos mesmos são fatores que influenciam d...

ver descrição completa

Autor principal: Silva, Gregory Oliveira da
Outros Autores: http://lattes.cnpq.br/2884225116495054
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2016
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/5260
Resumo:
Produtos de moda são itens difíceis de ser anotados e descritos por texto, fazendo-se necessário o uso de imagens para a realização de buscas em web sites de e-commerce. Tais produtos detém grande apelo visual, ou seja, a apresentação de imagens referentes aos mesmos são fatores que influenciam diretamente a decisão de compra de um cliente. Estes fatos justificam o estudo do uso de CBIR (Content Based Image Retrieval) neste contexto, uma área já bastante estudada na comunidade científica, mas que ainda possui diversas lacunas, sendo a principal o problema do Gap Semântico. O uso de características extraídas da imagem por um algoritmo ainda não é eficaz o suficiente em associá-la ao seu significado, o que se reflete nos resultados de uma busca, afetando a satisfação do cliente com a loja. Este trabalho busca abordar o problema do Gap Semântico através do uso de Programação Genética e Relevance Feedback, motivado pelos bons resultados relatados na literatura referentes ao uso de tais técnicas. Foram realizados experimentos com uma base de imagens extraídas de web sites de e-commerce, e foram usados dois subconjuntos de imagens como consultas, sendo um formado por imagens com plano de fundo uniforme (semelhantes às presentes na base), e outro por imagens com ruído no fundo (fotografias em geral). Foram comparados o uso de Relevance Feedback para os dois subconjuntos de consultas, e para cada subconjunto foram comparados o uso de funções de ranking aprendidas com e sem o uso de feedback. Como resultado temos que o melhor cenário para ambos os subconjuntos é o uso da função de ranking aprendida sem RF. O uso de RF durante a aprendizagem torna os indivíduos dependentes do feedback, piorando as respostas em buscas antes da primeira interação de RF, e fazendo com que a função aprendida não seja capaz de captar a semântica da consulta original.