/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Realimentação de relevância em buscas de imagem usando programação Genética
Produtos de moda são itens difíceis de ser anotados e descritos por texto, fazendo-se necessário o uso de imagens para a realização de buscas em web sites de e-commerce. Tais produtos detém grande apelo visual, ou seja, a apresentação de imagens referentes aos mesmos são fatores que influenciam d...
Autor principal: | Silva, Gregory Oliveira da |
---|---|
Outros Autores: | http://lattes.cnpq.br/2884225116495054 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2016
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/5260 |
Resumo: |
---|
Produtos de moda são itens difíceis de ser anotados e descritos por texto, fazendo-se
necessário o uso de imagens para a realização de buscas em web sites de e-commerce.
Tais produtos detém grande apelo visual, ou seja, a apresentação de imagens referentes
aos mesmos são fatores que influenciam diretamente a decisão de compra de um cliente.
Estes fatos justificam o estudo do uso de CBIR (Content Based Image Retrieval) neste
contexto, uma área já bastante estudada na comunidade científica, mas que ainda possui
diversas lacunas, sendo a principal o problema do Gap Semântico. O uso de características
extraídas da imagem por um algoritmo ainda não é eficaz o suficiente em associá-la ao
seu significado, o que se reflete nos resultados de uma busca, afetando a satisfação do
cliente com a loja. Este trabalho busca abordar o problema do Gap Semântico através
do uso de Programação Genética e Relevance Feedback, motivado pelos bons resultados
relatados na literatura referentes ao uso de tais técnicas. Foram realizados experimentos
com uma base de imagens extraídas de web sites de e-commerce, e foram usados dois
subconjuntos de imagens como consultas, sendo um formado por imagens com plano
de fundo uniforme (semelhantes às presentes na base), e outro por imagens com ruído
no fundo (fotografias em geral). Foram comparados o uso de Relevance Feedback para
os dois subconjuntos de consultas, e para cada subconjunto foram comparados o uso de
funções de ranking aprendidas com e sem o uso de feedback. Como resultado temos que
o melhor cenário para ambos os subconjuntos é o uso da função de ranking aprendida sem
RF. O uso de RF durante a aprendizagem torna os indivíduos dependentes do feedback,
piorando as respostas em buscas antes da primeira interação de RF, e fazendo com que a
função aprendida não seja capaz de captar a semântica da consulta original. |