/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
27 retas na superfície cúbica
Nesta dissertação é apresentada a ideia da prova do teorema que em uma superfície cúbica não singular em P3 contem 27 retas. Também, são mostrados como estas retas se intersectam, quais planos formam, quais são sêxtuplos das retas que não se cruzam (sêxtuplos de Schlaefli) etc. Um exemplo explíci...
Autor principal: | Ferreira, João Raimundo Silva |
---|---|
Outros Autores: | http://lattes.cnpq.br/1940158091064398 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2017
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/5888 |
Resumo: |
---|
Nesta dissertação é apresentada a ideia da prova do teorema que em uma superfície
cúbica não singular em P3 contem 27 retas. Também, são mostrados como estas retas
se intersectam, quais planos formam, quais são sêxtuplos das retas que não se cruzam
(sêxtuplos de Schlaefli) etc. Um exemplo explícito da superfície definida sobre Q tal
que todas suas retas são definidas sobre Q é tratado. Finalmente, mostra-se que existe
um isomorfismo entre uma superfície cúbica e um o plano inchado em 6 pontos. Isto é
uma matéria clássica de pesquisa de século XIX, mas ela tem desenvolvimento até hoje.
Como introdução, a dissertação contém a definição do espaço afim, espaço projetivo,
seus subespaços, variedades Grassmannianas dos subespaços e especialmente a variedade
G(2, 4) das retas em P3. Em seguida, a construção inicial de uma reta em P3 e P5
retas quais cruzam a ela é tratada. Mostra-se que existe uma e somente uma superfície
cúbica que contem a estas 6 retas. Usando o teorema que 4 retas no espaço têm 2 retas
secantes, é possível construir todas as 27 retas nesta superfície. Também, é achada sua
matriz de intersecção. Isto nos dá soluções de vários problemas combinatórios relacionados
com esta configuração das retas. Projeção da superfície de duas retas reversas permite
mostrar que existe um isomorfismo entre a superfície e um o plano inchado em 6 pontos.
Por sua vez, este isomorfismo permite obter mais facilmente a matriz da interseção das
retas. Finalmente, cálculos explícitos para uma configuração simples das 6 retas são feitos.
Como um resultado, obtemos uma superfície tal que todas suas 27 retas têm coordenadas
racionais. |