Tese

Estratégias algorítmicas exatas e híbridas para problemas de escalonamento em máquinas paralelas com penalidades de antecipação e atraso

Esta pesquisa investiga problemas de escalonamento com penalidades de antecipação e atraso em ambiente mono e multiprocessado envolvendo máquinas paralelas. Este problema é também conhecido na literatura como escalonamento Just-in-Time, sistema amplamente utilizado em indústrias para reduzir esto...

ver descrição completa

Autor principal: Amorim, Rainer Xavier de
Outros Autores: http://lattes.cnpq.br/6851610498599368
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Amazonas 2018
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/6147
Resumo:
Esta pesquisa investiga problemas de escalonamento com penalidades de antecipação e atraso em ambiente mono e multiprocessado envolvendo máquinas paralelas. Este problema é também conhecido na literatura como escalonamento Just-in-Time, sistema amplamente utilizado em indústrias para reduzir estoques e os custos decorrentes, a fim de que o produto seja produzido de acordo com a demanda. Neste trabalho é proposta uma estratégia algorítmica híbrida exato-heurística, baseada em uma formulação de programação inteira arc-time e um algoritmo evolucionário fortemente baseado em busca local, para melhor resolver problemas clássicos de escalonamento em máquinas paralelas envolvendo penalidades de antecipação e atraso, com tarefas independentes e tempos de processamento arbitrários. Os arcos são selecionados das soluções ótimas locais obtidas pelo algoritmo genético fortemente baseado em busca local (GLS) com movimentos generalizados de troca de pares, que são fornecidos como entrada para a formulação arc-time, para gerar soluções melhores do que as obtidas por ambos os métodos quando utilizados isoladamente. Os experimentos computacionais apresentam resultados competitivos em relação à literatura. O método proposto também resolve instâncias de tamanho maior de até 500 tarefas em máquinas paralelas idênticas.