/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Uso de um método preditivo para inferir a zona de aprendizagem de alunos de programação em um ambiente de correção automática de código
Em média, um terço dos alunos no mundo reprova em disciplinas de introdução à programação de computadores (IPC). Assim, muitos estudos vêm sendo conduzidos a fim de inferir o desempenho de estudantes de turmas de IPC. Inicialmente, pesquisadores investigavam a relação das notas dos alunos com fat...
Autor principal: | Pereira, Filipe Dwan |
---|---|
Outros Autores: | http://lattes.cnpq.br/1043535741108408 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2018
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/6425 |
Resumo: |
---|
Em média, um terço dos alunos no mundo reprova em disciplinas de introdução à
programação de computadores (IPC). Assim, muitos estudos vêm sendo conduzidos a
fim de inferir o desempenho de estudantes de turmas de IPC. Inicialmente, pesquisadores
investigavam a relação das notas dos alunos com fatores estáticos como: notas no
ensino médio, gênero, idade e outros. Entretanto, o comportamento dos estudantes
é dinâmico e, dessa forma, abordagens orientadas aos dados vêm ganhando atenção,
uma vez que muitas universidades utilizam ambientes web para turmas de programação
como juízes online. Com efeito, muitos pesquisadores vêm extraindo e tratando os
dados dos estudantes a partir desses ambientes e usando-os como atributos de algoritmos
de aprendizagem de máquina para a construção de modelos preditivos. No entanto, a
comunidade científica sugere que tais estudos sejam reproduzidos a fim de investigar
se eles são generalizáveis a outras bases de dados educacionais. Neste sentido, neste
trabalho apresentou-se um método que emprega um conjunto de atributos correlacionados
com as notas dos estudantes, sendo alguns baseados em trabalhos relacionados e outros
propostos nesta pesquisa, a fim de realizar a predição do desempenho dos alunos nas
avaliações intermediárias e nas médias finais. Tal método foi aplicado a uma base de
dados com 486 alunos de IPC. O conjunto de atributos chamado de perfil de programação
foi empregado em algoritmos de aprendizagem de máquina e otimizado utilizando
duas abordagens: a) ajuste de hiperparâmetros com random search e b) construção do
pipeline de aprendizagem de máquina utilizando algoritmos evolutivos. Como resultado,
atingiu-se 74,44% de acurácia na tarefa de identificar se os alunos iriam ser reprovados
ou aprovados usando os dados das duas semanas de aula em uma base de dados
balanceada. Esse resultado foi estatisticamente superior ao baseline. Destaca-se ainda
que a partir da oitava semana de aula, o método atingiu acurácias entre 85% e 90,62%. |