Tese

Removing DUST using multiple alignment of sequences

Um grande número de URLs obtidas por coletores corresponde a páginas com conteúdo duplicado ou quase duplicado, conhecidas em Inglês pelo acrônimo DUST, que pode ser traduzido como Diferentes URLs com Texto Similar. DUST são prejudiciais para sistemas de busca porque ao serem coletadas, armaze...

ver descrição completa

Autor principal: Rodrigues, Kaio Wagner Lima
Outros Autores: http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4228711E9
Grau: Tese
Idioma: eng
Publicado em: Universidade Federal do Amazonas 2018
Assuntos:
Acesso em linha: https://tede.ufam.edu.br/handle/tede/6557
Resumo:
Um grande número de URLs obtidas por coletores corresponde a páginas com conteúdo duplicado ou quase duplicado, conhecidas em Inglês pelo acrônimo DUST, que pode ser traduzido como Diferentes URLs com Texto Similar. DUST são prejudiciais para sistemas de busca porque ao serem coletadas, armazenadas e utilizadas, contribuem para o desperdício de recursos, a criação de rankings de baixa qualidade e, consequentemente, uma experiência pior para o usuário. Para lidar com este problema, muita pesquisa tem sido realizada com intuito de detectar e remover DUST antes mesmo de coletar as URLs. Para isso, esses métodos se baseiam no aprendizado de regras de normalização que transformam todas as URLs com conteúdo duplicado para uma mesma forma canônica. Tais regras podem ser então usadas por coletores com o intuito de reconhecer e ignorar DUST. Para isto, é necessário derivar, de forma eficiente, um conjunto mínimo de regras que alcance uma grande taxa de redução com baixa incidência de falsos-positivos. Como a maioria dos métodos propostos na literatura é baseada na análise de pares, a qualidade das regras é afetada pelo critério usado para selecionar os exemplos de pares e a disponibilidade de exemplos representativos no treino. Para evitar processar um número muito alto de exemplos, em geral, são aplicadas técnicas de amostragem ou a busca por DUST é limitada apenas a sites, o que impede a geração de regras que envolvam diferentes nomes de DNS. Como consequência, métodos atuais são muito suscetíveis a ruído e, em muitos casos, derivam regras muito específicas. Nesta tese, é proposta uma nova técnica para derivar regras, baseada em uma estratégia de alinhamento múltiplo de sequências. Em particular, mostramos que um alinhamento prévio das URLs com conteúdo duplicado contribui para uma melhor generalização, o que resulta na geração de regras mais efetivas. Através de experimentos em duas diferentes coleções extraídas da Web, observa-se que a técnica proposta, além de ser mais rápida, filtra um número maior de URLs duplicadas. Uma versão distribuída do método, baseada na arquitetura MapReduce, proporciona a possibilidade de escalabilidade para coleções com dimensões compatíveis com a Web.