Dissertação

O uso de histórico de acesso na definição de taxa de bits em sessões de vídeo com taxa adaptável

As aplicações de distribuição de vídeo estão entre as que mais geram tráfego na Internet. Estima-se que tais aplicações participarão com 82% de todo o tráfego gerado em 2022. A tecnologia mais usada por essas aplicações fazem a distribuição centrada na ação dos clientes que usam informações da sessã...

ver descrição completa

Autor principal: Paz, Tonny Franck Osaki da
Outros Autores: http://lattes.cnpq.br/3068424416537397
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2020
Assuntos:
Acesso em linha: https://tede.ufam.edu.br/handle/tede/7930
Resumo:
As aplicações de distribuição de vídeo estão entre as que mais geram tráfego na Internet. Estima-se que tais aplicações participarão com 82% de todo o tráfego gerado em 2022. A tecnologia mais usada por essas aplicações fazem a distribuição centrada na ação dos clientes que usam informações da sessão em andamento para tomar decisão sobre a qualidade das imagens e a continuidade da sessão. Essa tomada de decisão tem como um dos principais fatores a vazão fim-a-fim das conexões estabelecidas entre o cliente e os servidores de vídeos. Uma parcela importante das estratégias já implementadas para a tomada de decisão utiliza apenas dados coletados durante a sessão. Nesse cenário, a observação contínua da vazão do canal e suas peculiaridades são essenciais para realização de predições de maior precisão, dada a natureza instável do canal. Entretanto, eventos gerados pela audiência ou pelas estratégias do TCP produzem períodos de ausência de observação da vazão, induzindo tais estratégias a comportamentos erráticos. Nesta dissertação, apresenta-se o conceito de taxa realizável, que pode auxiliar as estratégias de adaptação na tomada de decisão em aplicações de vídeo streaming. Usam-se dados sobre o canal, coletados em medições ativas, para definição de tal taxa. Métodos de Aprendizado de Máquina foram empregados para construção de modelos preditivos. As avaliações dos modelos mostram que as predições são precisas e aplicáveis em sessões de vídeo streaming, sendo possível, por exemplo, a redução do período inicial de prospecção, e até mesmo um equilíbrio maior entre continuidade e qualidade das imagens.