Dissertação

Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas

Segundo dados do Instituto Nacional de Câncer, o câncer de pulmão é um dos tumores mais frequentes na população brasileira. O processo para seu diagnóstico por vezes passa pela necessidade de segmentar a região pulmonar em um exame de imagem, fase essa que demanda horas de um profissional da área mé...

ver descrição completa

Autor principal: Portela, Ronaldo de Sá
Outros Autores: http://lattes.cnpq.br/3550218083163609
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2021
Assuntos:
Acesso em linha: https://tede.ufam.edu.br/handle/tede/8210
id oai:https:--tede.ufam.edu.br-handle-:tede-8210
recordtype dspace
spelling oai:https:--tede.ufam.edu.br-handle-:tede-82102021-04-13T02:10:52Z Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas Lung region segmentation in chest x-ray images using deep convolutional neural networks Portela, Ronaldo de Sá Costa Filho, Cícero Ferreira Fernandes http://lattes.cnpq.br/3550218083163609 http://lattes.cnpq.br/3029011770761387 Oliveira, Jozias Parente de http://lattes.cnpq.br/1169202481169729 Costa, José Mir Justino da http://lattes.cnpq.br/2396817509327075 Convolutive neural network Chest radiography Japanese Society of Radiological Technology Exame de imagem Neoplasia pulmonar ENGENHARIAS Segmentação Pulmonar Radiografia Torácica Redes Neurais Convolutivas Aprendizado Profundo Segundo dados do Instituto Nacional de Câncer, o câncer de pulmão é um dos tumores mais frequentes na população brasileira. O processo para seu diagnóstico por vezes passa pela necessidade de segmentar a região pulmonar em um exame de imagem, fase essa que demanda horas de um profissional da área médica. Sendo assim, a utilização de ferramentas que aplicam técnicas automatizadas para realizar essa tarefa pode auxiliá-los. Esta dissertação desenvolve uma metodologia automática, baseada em redes neurais convolutivas, para segmentar a região pulmonar em imagens de radiografia torácica. São desenvolvidas três arquiteturas (CNN1, CNN2 e CNN3), onde as arquiteturas CNN1 e CNN2 são de rede direta, enquanto a arquitetura CNN3 é uma topologia de grafos acíclicos direcionados (DAG). Em conjunto com as arquiteturas são investigados três diferentes métodos de regularização (Dropout, L2 e Dropout+L2) e três diferentes métodos de otimização (SGDM, RMSPROP e ADAM). A base de dados utilizada para esse estudo é a JSRT - Japanese Society of Radiological Technology, que contém 247 imagens de radiografia torácica. Como forma de mensurar a performance das redes estudadas foram utilizados seis métricas de desempenho, são elas: Acurácia Global, Acurácia, Coeficiente de Jaccard, Coeficiente de Jaccard Ponderado, Score F1 e Índice Dice. Ao término de todas as simulações, os melhores resultados foram alcançados utilizando a rede CNN3, que faz uso da topologia DAG, conjuntamente com o método de regularização Dropout+L2 e método de otimização ADAM. As métricas obtidas foram: Acurácia Global igual a 0.99139 ± 0.00098; Acurácia igual a 0.98927 ± 0.00161; Coeficiente de Jaccard de 0.97967 ± 0.00232; Coeficiente de Jaccard Ponderado igual a 0.98294 ± 0.00191; Score F1 de 0.97475 ± 0.00357 e, por fim, um Índice Dice de 0.98921 ± 0.00163. According to data from the National Cancer Institute, lung cancer is one of the most frequent tumors in the Brazilian population. The process for its diagnosis sometimes involves the need to segment the pulmonary region in an image exam, a phase that requires hours from a medical professional. Therefore, the use of tools that apply automated techniques to accomplish this task could help them. This dissertation develops an automatic methodology, based on convolutive neural networks, to segment the lung region in chest X-ray images. Three architectures are developed (CNN1, CNN2 and CNN3), where the CNN1 and CNN2 architectures are of direct network, while the CNN3 architecture is a topology of directed acyclic graphs (DAG). In conjunction with the architectures, three different regularization methods (Dropout, L2 and Dropout + L2) and three different optimization methods (SGDM, RMSPROP and ADAM) are investigated. The database used for this study is the JSRT - Japanese Society of Radiological Technology, which contains 247 images of chest radiography. As a way of measuring the performance of the studied networks, six performance metrics were used, they are: Global Accuracy, Accuracy, Jaccard Coefficient, Weighted Jaccard Coefficient, Score F1 and Dice Index. At the end of all simulations, the best results were achieved using the CNN3 network, which makes use of the DAG topology, together with the Dropout + L2 regularization method and the ADAM optimization method. The metrics obtained were: Global Accuracy equal to 0.99139 ± 0.00098; Accuracy equal to 0.98927 ± 0.00161; Jaccard coefficient of 0.97967 ± 0.00232; Weighted Jaccard coefficient equal to 0.98294 ± 0.00191; F1 Score of 0.97475 ± 0.00357 and, finally, a Dice Index of 0.98921 ± 0.00163. 2021-04-09T15:31:32Z 2020-05-29 Dissertação PORTELA, Ronaldo de Sá. Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas. 2020. 124 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2020. https://tede.ufam.edu.br/handle/tede/8210 por Acesso Aberto http://creativecommons.org/licenses/by/4.0/ application/pdf Universidade Federal do Amazonas Faculdade de Tecnologia Brasil UFAM Programa de Pós-graduação em Engenharia Elétrica
institution TEDE - Universidade Federal do Amazonas
collection TEDE-UFAM
language por
topic Convolutive neural network
Chest radiography
Japanese Society of Radiological Technology
Exame de imagem
Neoplasia pulmonar
ENGENHARIAS
Segmentação Pulmonar
Radiografia Torácica
Redes Neurais Convolutivas
Aprendizado Profundo
spellingShingle Convolutive neural network
Chest radiography
Japanese Society of Radiological Technology
Exame de imagem
Neoplasia pulmonar
ENGENHARIAS
Segmentação Pulmonar
Radiografia Torácica
Redes Neurais Convolutivas
Aprendizado Profundo
Portela, Ronaldo de Sá
Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
topic_facet Convolutive neural network
Chest radiography
Japanese Society of Radiological Technology
Exame de imagem
Neoplasia pulmonar
ENGENHARIAS
Segmentação Pulmonar
Radiografia Torácica
Redes Neurais Convolutivas
Aprendizado Profundo
description Segundo dados do Instituto Nacional de Câncer, o câncer de pulmão é um dos tumores mais frequentes na população brasileira. O processo para seu diagnóstico por vezes passa pela necessidade de segmentar a região pulmonar em um exame de imagem, fase essa que demanda horas de um profissional da área médica. Sendo assim, a utilização de ferramentas que aplicam técnicas automatizadas para realizar essa tarefa pode auxiliá-los. Esta dissertação desenvolve uma metodologia automática, baseada em redes neurais convolutivas, para segmentar a região pulmonar em imagens de radiografia torácica. São desenvolvidas três arquiteturas (CNN1, CNN2 e CNN3), onde as arquiteturas CNN1 e CNN2 são de rede direta, enquanto a arquitetura CNN3 é uma topologia de grafos acíclicos direcionados (DAG). Em conjunto com as arquiteturas são investigados três diferentes métodos de regularização (Dropout, L2 e Dropout+L2) e três diferentes métodos de otimização (SGDM, RMSPROP e ADAM). A base de dados utilizada para esse estudo é a JSRT - Japanese Society of Radiological Technology, que contém 247 imagens de radiografia torácica. Como forma de mensurar a performance das redes estudadas foram utilizados seis métricas de desempenho, são elas: Acurácia Global, Acurácia, Coeficiente de Jaccard, Coeficiente de Jaccard Ponderado, Score F1 e Índice Dice. Ao término de todas as simulações, os melhores resultados foram alcançados utilizando a rede CNN3, que faz uso da topologia DAG, conjuntamente com o método de regularização Dropout+L2 e método de otimização ADAM. As métricas obtidas foram: Acurácia Global igual a 0.99139 ± 0.00098; Acurácia igual a 0.98927 ± 0.00161; Coeficiente de Jaccard de 0.97967 ± 0.00232; Coeficiente de Jaccard Ponderado igual a 0.98294 ± 0.00191; Score F1 de 0.97475 ± 0.00357 e, por fim, um Índice Dice de 0.98921 ± 0.00163.
author_additional Costa Filho, Cícero Ferreira Fernandes
author_additionalStr Costa Filho, Cícero Ferreira Fernandes
format Dissertação
author Portela, Ronaldo de Sá
author2 http://lattes.cnpq.br/3550218083163609
author2Str http://lattes.cnpq.br/3550218083163609
title Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_short Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_full Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_fullStr Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_full_unstemmed Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_sort segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
publisher Universidade Federal do Amazonas
publishDate 2021
url https://tede.ufam.edu.br/handle/tede/8210
_version_ 1831969944362811392
score 11.753735