/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Predição de mortalidade de pacientes com traumatismo cranioencefálico no Brasil usando técnicas de aprendizagem de máquina
Esse trabalho propõe, de forma original, a utilização de redes neurais convolutivas para a predição da mortalidade em até 14 dias de pacientes com trauma crânio encefálico. O desempenho das redes neurais é comparado com o desempenho de outras ferramentas clássicas de aprendizado de máquina, como reg...
Autor principal: | Guimarães, Kellen Adriely Alvarenga |
---|---|
Outros Autores: | http://lattes.cnpq.br/6313430137513242 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2022
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/8759 |
Resumo: |
---|
Esse trabalho propõe, de forma original, a utilização de redes neurais convolutivas para a predição da mortalidade em até 14 dias de pacientes com trauma crânio encefálico. O desempenho das redes neurais é comparado com o desempenho de outras ferramentas clássicas de aprendizado de máquina, como regressor logístico, perceptron multicamadas, máquina de vetores de suporte, árvores de decisão e floresta randômica. Na simulação dos modelos utilizando redes neurais, diversos métodos de otimização foram utilizados, como RMSProp, Adam, Adamax e SGDM. A base de dados utilizadas é constituída de 529 registros e 16 variáveis preditoras, tendo sido obtida no Hospital das Clínicas (São Paulo, Brasil). Devido a presença de muitos valores ausentes nas variáveis preditoras propõe-se e avaliou-se dois procedimentos para o preenchimento dos valores ausentes das mesmas, utilizando métodos como árvore de decisão, floresta randômica, k-vizinho mais próximo e regressão linear. Os melhores resultados obtidos para a taxa de predição foram precisão de 0,845 e área sob a curva ROC de 0,911 |