Dissertação

Avaliação de métodos de classificação baseados em regras de associação para detecção de malwares android

Esta pesquisa tem por objetivo investigar o desempenho e a viabilidade de diferentes modelos de regras de associação no contexto de classificação de malwares Android. Para tanto, desenvolvemos um novo modelo de classificação baseado em regras de associação e qualidade de regras. Para fins de compara...

ver descrição completa

Autor principal: Rocha, Vanderson da Silva
Outros Autores: http://lattes.cnpq.br/8598944580181017, https://orcid.org/0000-0003-3103-7749
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2023
Assuntos:
Acesso em linha: https://tede.ufam.edu.br/handle/tede/9430
Resumo:
Esta pesquisa tem por objetivo investigar o desempenho e a viabilidade de diferentes modelos de regras de associação no contexto de classificação de malwares Android. Para tanto, desenvolvemos um novo modelo de classificação baseado em regras de associação e qualidade de regras. Para fins de comparação dos modelos, utilizamos datasets conhecidos e frequentemente usados para o treino de modelos de detecção de \malwares Android. Os resultados demonstram que nosso modelo possui desempenho equivalente a outros modelos baseados em regras de associação, obtendo valores de acurácia acima de 85\%, e em alguns casos sobressaindo-se a modelos de aprendizagem de máquina.