/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Reconhecimento de gestos de membros superiores utilizando sensores de movimento e fotopletismografia
Este trabalho visa avaliar as técnicas de aprendizagem de máquinas usando fotopletismografia de baixa frequência associada a sensores de movimento de dispositivos vestíveis, tais como relógios inteligentes, no reconhecimento de gestos do pulso e dos dedos. Após a segmentação dos gestos baseado na id...
Autor principal: | Rylo, Marcos Negreiros |
---|---|
Outros Autores: | http://lattes.cnpq.br/0695393115895978 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2023
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/9571 |
Resumo: |
---|
Este trabalho visa avaliar as técnicas de aprendizagem de máquinas usando fotopletismografia de baixa frequência associada a sensores de movimento de dispositivos vestíveis, tais como relógios inteligentes, no reconhecimento de gestos do pulso e dos dedos. Após a segmentação dos gestos baseado na identificação de artefatos de movimento no sinal de fotopletismografia (PPG), modelos de classificação utilizando Máquinas de Vetores de Suporte, Florestas Aleatórias e XgBoost foram treinados utilizando atributos estatísticas extraídas de sinais PPG e sensores de movimento. O projeto aponta que frequências de 25 Hz são adequadas para o processo de reconhecimento, alcançando resultados de até 82% precisão e 82% de revocação. |