/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Identificação de incêndios florestais utilizando segmentação de imagens e aprendizado de máquina
Este trabalho propõe o uso de diferentes técnicas de pré-processamento de dados e aprendizado profundo para análise de imagens e detecção de incêndios florestais. As imagens utilizadas para treinamento têm origem em dois diferentes bancos de dados com variação de horário, estação climática e posicio...
Autor principal: | Castro, Lucas de Góes Muniz de |
---|---|
Outros Autores: | http://lattes.cnpq.br/1898497874796056 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2023
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/9749 |
Resumo: |
---|
Este trabalho propõe o uso de diferentes técnicas de pré-processamento de dados e aprendizado profundo para análise de imagens e detecção de incêndios florestais. As imagens utilizadas para treinamento têm origem em dois diferentes bancos de dados com variação de horário, estação climática e posicionamento. Para o treinamento, optou-se por empregar algoritmos de aprendizagem supervisionada e classificadores probabilísticos, totalizando três origens de treinamento com variações de parâmetros e diferentes técnicas de pré-processamento complementares, como color perception e quartis.
A principal métrica de avaliação se refere a acurácia e ao índice de verdadeiros-positivos e falsos-negativos, essenciais para essa aplicação, por se tratar de um sistema de identificação e alerta. Também se considera valores de tempo de processamento e treinamento. Os resultados obtidos foram superiores ao estado-da-arte para identificação de incêndios florestais, com acurácias superiores a 99,6% utilizando a técnica Random Forest. |