/img alt="Imagem da capa" class="recordcover" src="""/>
Trabalho de Conclusão de Curso
Um sistema embarcado para detecção de sirenes utilizando aprendizado profundo
This work presents an embedded system development for siren detection using deep learning. In urban areas, emergency vehicles sirens play a role of alerting drivers and pedestrians to an emergency situation that requires a quick response. However, the acoustic insulation of vehicles and urban noise...
Autor principal: | Barreto, Lucas Luis de Souza |
---|---|
Grau: | Trabalho de Conclusão de Curso |
Idioma: | por |
Publicado em: |
Brasil
2024
|
Assuntos: | |
Acesso em linha: |
http://riu.ufam.edu.br/handle/prefix/7543 |
Resumo: |
---|
This work presents an embedded system development for siren detection using deep learning. In urban areas, emergency vehicles sirens play a role of alerting drivers and pedestrians to an emergency situation that requires a quick response. However, the acoustic insulation of vehicles and urban noise often make it difficult for sirens to be heard. This work contributes to solving this problem by using a microcontroller, audio processing techniques, and convolutional neural networks to detect sirens and take action to assist these emergency vehicles. The system achieved good performance metrics, most above 95%. This result demonstrates the feasibility of applying deep learning in embedded systems to improve traffic safety and efficiency. |