Artigo

Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on...

ver descrição completa

Autor principal: Réjou-Méchain, Maxime
Outros Autores: Muller-Landau, Helene C., Detto, Matteo, Thomas, Sean C., Le-Toan, Thuy, Saatchi, Sassan S., Barreto-Silva, Juan Sebastian, Bourg, Norman A., Bunyavejchewin, Sarayudh, Butt, Nathalie, Brockelman, Warren Y., Cao, Min, Cárdenas, Dairón, Chiang, Jyh-Min, Chuyong, George Bindeh, Clay, Keith, Condit, Richard S., Dattaraja, Handanakere Shavaramaiah, Davies, Stuart James, Duque M, Alvaro J., Esufali, Shameema T., Ewango, Corneille E.N., Fernando, R. H S, Fletcher, Christine Dawn, N Gunatilleke, I. A.U., Hao, Zhanqing, Harms, Kyle E., Hart, Terese B., Hérault, Bruno, Howe, Robert W., Hubbell, Stephen P., Johnson, Daniel J., Kenfack, David, Larson, Andrew J., Lin, Luxiang, Lin, Yiching, Lutz, James A., Makana, Jean Rémy, Malhi, Yadvinder Singh, Marthews, Toby R., McEwan, Ryan Walker, McMahon, Sean M., McShea, William J., Muscarella, Robert A., Nathalang, Anuttara, Noor, Nur Supardi Md, Nytch, Christopher J., Oliveira, Alexandre Adalardo de, Phillips, Richard P., Pongpattananurak, Nantachai, Punchi-Manage, Ruwan, Salim, R., Schurman, Jonathan S., Sukumar, Raman, Suresh, Hebbalalu Sathyanarayana, Suwanvecho, Udomlux, Thomas, Duncan W., Thompson, Jill, Uríarte, Ma?ia, Valencia, Renato L., Vicentini, Alberto, Wolf, Amy T., Yap, Sandra L., Yuan, Zuoqiang, Zartman, Charles Eugene, Zimmerman, Jess K., Chave, Jérôme
Grau: Artigo
Idioma: English
Publicado em: Biogeosciences 2020
Assuntos:
Acesso em linha: https://repositorio.inpa.gov.br/handle/1/14893
id oai:repositorio:1-14893
recordtype dspace
spelling oai:repositorio:1-14893 Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks Réjou-Méchain, Maxime Muller-Landau, Helene C. Detto, Matteo Thomas, Sean C. Le-Toan, Thuy Saatchi, Sassan S. Barreto-Silva, Juan Sebastian Bourg, Norman A. Bunyavejchewin, Sarayudh Butt, Nathalie Brockelman, Warren Y. Cao, Min Cárdenas, Dairón Chiang, Jyh-Min Chuyong, George Bindeh Clay, Keith Condit, Richard S. Dattaraja, Handanakere Shavaramaiah Davies, Stuart James Duque M, Alvaro J. Esufali, Shameema T. Ewango, Corneille E.N. Fernando, R. H S Fletcher, Christine Dawn N Gunatilleke, I. A.U. Hao, Zhanqing Harms, Kyle E. Hart, Terese B. Hérault, Bruno Howe, Robert W. Hubbell, Stephen P. Johnson, Daniel J. Kenfack, David Larson, Andrew J. Lin, Luxiang Lin, Yiching Lutz, James A. Makana, Jean Rémy Malhi, Yadvinder Singh Marthews, Toby R. McEwan, Ryan Walker McMahon, Sean M. McShea, William J. Muscarella, Robert A. Nathalang, Anuttara Noor, Nur Supardi Md Nytch, Christopher J. Oliveira, Alexandre Adalardo de Phillips, Richard P. Pongpattananurak, Nantachai Punchi-Manage, Ruwan Salim, R. Schurman, Jonathan S. Sukumar, Raman Suresh, Hebbalalu Sathyanarayana Suwanvecho, Udomlux Thomas, Duncan W. Thompson, Jill Uríarte, Ma?ia Valencia, Renato L. Vicentini, Alberto Wolf, Amy T. Yap, Sandra L. Yuan, Zuoqiang Zartman, Charles Eugene Zimmerman, Jess K. Chave, Jérôme Biomass Carbon Sequestration Forest Cover Remote Sensing Spatial Data Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. © Author(s) 2014. 2020-05-07T13:47:14Z 2020-05-07T13:47:14Z 2014 Artigo https://repositorio.inpa.gov.br/handle/1/14893 10.5194/bg-11-6827-2014 en Volume 11, Número 23, Pags. 6827-6840 Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ application/pdf Biogeosciences
institution Instituto Nacional de Pesquisas da Amazônia - Repositório Institucional
collection INPA-RI
language English
topic Biomass
Carbon Sequestration
Forest Cover
Remote Sensing
Spatial Data
spellingShingle Biomass
Carbon Sequestration
Forest Cover
Remote Sensing
Spatial Data
Réjou-Méchain, Maxime
Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
topic_facet Biomass
Carbon Sequestration
Forest Cover
Remote Sensing
Spatial Data
description Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. © Author(s) 2014.
format Artigo
author Réjou-Méchain, Maxime
author2 Muller-Landau, Helene C.
Detto, Matteo
Thomas, Sean C.
Le-Toan, Thuy
Saatchi, Sassan S.
Barreto-Silva, Juan Sebastian
Bourg, Norman A.
Bunyavejchewin, Sarayudh
Butt, Nathalie
Brockelman, Warren Y.
Cao, Min
Cárdenas, Dairón
Chiang, Jyh-Min
Chuyong, George Bindeh
Clay, Keith
Condit, Richard S.
Dattaraja, Handanakere Shavaramaiah
Davies, Stuart James
Duque M, Alvaro J.
Esufali, Shameema T.
Ewango, Corneille E.N.
Fernando, R. H S
Fletcher, Christine Dawn
N Gunatilleke, I. A.U.
Hao, Zhanqing
Harms, Kyle E.
Hart, Terese B.
Hérault, Bruno
Howe, Robert W.
Hubbell, Stephen P.
Johnson, Daniel J.
Kenfack, David
Larson, Andrew J.
Lin, Luxiang
Lin, Yiching
Lutz, James A.
Makana, Jean Rémy
Malhi, Yadvinder Singh
Marthews, Toby R.
McEwan, Ryan Walker
McMahon, Sean M.
McShea, William J.
Muscarella, Robert A.
Nathalang, Anuttara
Noor, Nur Supardi Md
Nytch, Christopher J.
Oliveira, Alexandre Adalardo de
Phillips, Richard P.
Pongpattananurak, Nantachai
Punchi-Manage, Ruwan
Salim, R.
Schurman, Jonathan S.
Sukumar, Raman
Suresh, Hebbalalu Sathyanarayana
Suwanvecho, Udomlux
Thomas, Duncan W.
Thompson, Jill
Uríarte, Ma?ia
Valencia, Renato L.
Vicentini, Alberto
Wolf, Amy T.
Yap, Sandra L.
Yuan, Zuoqiang
Zartman, Charles Eugene
Zimmerman, Jess K.
Chave, Jérôme
author2Str Muller-Landau, Helene C.
Detto, Matteo
Thomas, Sean C.
Le-Toan, Thuy
Saatchi, Sassan S.
Barreto-Silva, Juan Sebastian
Bourg, Norman A.
Bunyavejchewin, Sarayudh
Butt, Nathalie
Brockelman, Warren Y.
Cao, Min
Cárdenas, Dairón
Chiang, Jyh-Min
Chuyong, George Bindeh
Clay, Keith
Condit, Richard S.
Dattaraja, Handanakere Shavaramaiah
Davies, Stuart James
Duque M, Alvaro J.
Esufali, Shameema T.
Ewango, Corneille E.N.
Fernando, R. H S
Fletcher, Christine Dawn
N Gunatilleke, I. A.U.
Hao, Zhanqing
Harms, Kyle E.
Hart, Terese B.
Hérault, Bruno
Howe, Robert W.
Hubbell, Stephen P.
Johnson, Daniel J.
Kenfack, David
Larson, Andrew J.
Lin, Luxiang
Lin, Yiching
Lutz, James A.
Makana, Jean Rémy
Malhi, Yadvinder Singh
Marthews, Toby R.
McEwan, Ryan Walker
McMahon, Sean M.
McShea, William J.
Muscarella, Robert A.
Nathalang, Anuttara
Noor, Nur Supardi Md
Nytch, Christopher J.
Oliveira, Alexandre Adalardo de
Phillips, Richard P.
Pongpattananurak, Nantachai
Punchi-Manage, Ruwan
Salim, R.
Schurman, Jonathan S.
Sukumar, Raman
Suresh, Hebbalalu Sathyanarayana
Suwanvecho, Udomlux
Thomas, Duncan W.
Thompson, Jill
Uríarte, Ma?ia
Valencia, Renato L.
Vicentini, Alberto
Wolf, Amy T.
Yap, Sandra L.
Yuan, Zuoqiang
Zartman, Charles Eugene
Zimmerman, Jess K.
Chave, Jérôme
title Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_short Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_full Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_fullStr Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_full_unstemmed Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_sort local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
publisher Biogeosciences
publishDate 2020
url https://repositorio.inpa.gov.br/handle/1/14893
_version_ 1787142933153054720
score 11.653393