Artigo

Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis

Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three diff...

ver descrição completa

Autor principal: Tonelli, Fernanda MP
Outros Autores: dos Santos NassifLacerda, Samyra Maria, Procópio, Marcela Santos, Lemos, Breno Luiz Sales, França, Luiz Renato de, Resende, Rodrigo Ribeiro
Grau: Artigo
Idioma: English
Publicado em: Scientific Reports 2020
Assuntos:
Acesso em linha: https://repositorio.inpa.gov.br/handle/1/15219
Resumo:
Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age). GT is a faster technique, but the modified gamete production is temporary (70% of animals with 52% MSF). ET is an easier way to obtain mosaic transgenic animals compared to microinjection of eggs, but non-site-directed integration in the fish genome can be a problem. In this study, PI3Kc2α gene disruption impaired development during the embryo stage and caused premature death. The manipulator should choose a technique based on the time available for transgenic obtainment and if this generation is required to be continuous or not. © The Author(s) 2017.