Artigo

Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified....

ver descrição completa

Autor principal: Bustamante, Mercedes M.C.
Outros Autores: Roitman, Iris, Aide, T. Mitchell, Alencar, Ane A.C., Anderson, Liana Oighenstein, Aragao, L. E.O.C., Asner, Gregory P., Barlow, Jos, Berenguer, Erika, Chambers, Jeffrey Quintin, Costa, Marcos Heil, Fanin, Thierry, Ferreira, Laerte Guimarães, Ferreira, Joice Nunes, Keller, Michael, Magnusson, William Ernest, Morales-Barquero, Lucía, Morton, Douglas C., Ometto, Jean Pierre Henry Balbaud, Palace, Michael W., Peres, Carlos A., Silvério, Divino Vicente, Trumbore, Susan Elizabeth, Guimarães Vieira, Ima Cèlia
Grau: Artigo
Idioma: English
Publicado em: Global Change Biology 2020
Assuntos:
Acesso em linha: https://repositorio.inpa.gov.br/handle/1/17427
id oai:repositorio:1-17427
recordtype dspace
spelling oai:repositorio:1-17427 Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity Bustamante, Mercedes M.C. Roitman, Iris Aide, T. Mitchell Alencar, Ane A.C. Anderson, Liana Oighenstein Aragao, L. E.O.C. Asner, Gregory P. Barlow, Jos Berenguer, Erika Chambers, Jeffrey Quintin Costa, Marcos Heil Fanin, Thierry Ferreira, Laerte Guimarães Ferreira, Joice Nunes Keller, Michael Magnusson, William Ernest Morales-Barquero, Lucía Morton, Douglas C. Ometto, Jean Pierre Henry Balbaud Palace, Michael W. Peres, Carlos A. Silvério, Divino Vicente Trumbore, Susan Elizabeth Guimarães Vieira, Ima Cèlia Biodiversity Carbon Cycle Carbon Emission Ecosystem Modeling Field Survey Remote Sensing Tropical Forest Carbon Biodiversity Carbon Cycle Climate Change Ecosystem Environmental Protection Forest Forestry Procedures Theoretical Model Tropic Climate Biodiversity Carbon Carbon Cycle Climate Change Conservation Of Natural Resources Ecosystem Forestry Forests Models, Theoretical Tropical Climate Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2016 John Wiley & Sons Ltd. 2020-06-15T21:42:35Z 2020-06-15T21:42:35Z 2016 Artigo https://repositorio.inpa.gov.br/handle/1/17427 10.1111/gcb.13087 en Volume 22, Número 1, Pags. 92-109 Restrito Global Change Biology
institution Instituto Nacional de Pesquisas da Amazônia - Repositório Institucional
collection INPA-RI
language English
topic Biodiversity
Carbon Cycle
Carbon Emission
Ecosystem Modeling
Field Survey
Remote Sensing
Tropical Forest
Carbon
Biodiversity
Carbon Cycle
Climate Change
Ecosystem
Environmental Protection
Forest
Forestry
Procedures
Theoretical Model
Tropic Climate
Biodiversity
Carbon
Carbon Cycle
Climate Change
Conservation Of Natural Resources
Ecosystem
Forestry
Forests
Models, Theoretical
Tropical Climate
spellingShingle Biodiversity
Carbon Cycle
Carbon Emission
Ecosystem Modeling
Field Survey
Remote Sensing
Tropical Forest
Carbon
Biodiversity
Carbon Cycle
Climate Change
Ecosystem
Environmental Protection
Forest
Forestry
Procedures
Theoretical Model
Tropic Climate
Biodiversity
Carbon
Carbon Cycle
Climate Change
Conservation Of Natural Resources
Ecosystem
Forestry
Forests
Models, Theoretical
Tropical Climate
Bustamante, Mercedes M.C.
Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity
topic_facet Biodiversity
Carbon Cycle
Carbon Emission
Ecosystem Modeling
Field Survey
Remote Sensing
Tropical Forest
Carbon
Biodiversity
Carbon Cycle
Climate Change
Ecosystem
Environmental Protection
Forest
Forestry
Procedures
Theoretical Model
Tropic Climate
Biodiversity
Carbon
Carbon Cycle
Climate Change
Conservation Of Natural Resources
Ecosystem
Forestry
Forests
Models, Theoretical
Tropical Climate
description Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2016 John Wiley & Sons Ltd.
format Artigo
author Bustamante, Mercedes M.C.
author2 Roitman, Iris
Aide, T. Mitchell
Alencar, Ane A.C.
Anderson, Liana Oighenstein
Aragao, L. E.O.C.
Asner, Gregory P.
Barlow, Jos
Berenguer, Erika
Chambers, Jeffrey Quintin
Costa, Marcos Heil
Fanin, Thierry
Ferreira, Laerte Guimarães
Ferreira, Joice Nunes
Keller, Michael
Magnusson, William Ernest
Morales-Barquero, Lucía
Morton, Douglas C.
Ometto, Jean Pierre Henry Balbaud
Palace, Michael W.
Peres, Carlos A.
Silvério, Divino Vicente
Trumbore, Susan Elizabeth
Guimarães Vieira, Ima Cèlia
author2Str Roitman, Iris
Aide, T. Mitchell
Alencar, Ane A.C.
Anderson, Liana Oighenstein
Aragao, L. E.O.C.
Asner, Gregory P.
Barlow, Jos
Berenguer, Erika
Chambers, Jeffrey Quintin
Costa, Marcos Heil
Fanin, Thierry
Ferreira, Laerte Guimarães
Ferreira, Joice Nunes
Keller, Michael
Magnusson, William Ernest
Morales-Barquero, Lucía
Morton, Douglas C.
Ometto, Jean Pierre Henry Balbaud
Palace, Michael W.
Peres, Carlos A.
Silvério, Divino Vicente
Trumbore, Susan Elizabeth
Guimarães Vieira, Ima Cèlia
title Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity
title_short Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity
title_full Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity
title_fullStr Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity
title_full_unstemmed Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity
title_sort toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity
publisher Global Change Biology
publishDate 2020
url https://repositorio.inpa.gov.br/handle/1/17427
_version_ 1787142956987187200
score 11.675608