Artigo

Predicting environmental gradients with fern species composition in Brazilian Amazonia

Aim: A major problem for conservation in Amazonia is that species distribution maps are inaccurate. Consequently, conservation planning needs to be based on other information sources such as vegetation and soilmaps, which are also inaccurate. We propose and test the use of biotic data on a common an...

ver descrição completa

Autor principal: Zuquim, Gabriela
Outros Autores: Tuomisto, Hanna, Jones, Mirkka M., Prado, J., Figueiredo, Fernando Oliveira Gouvêa, Moulatlet, Gabriel M., Costa, Flávia Regina Capellotto, Quesada, Carlos Alberto, Emilio, Thaise
Grau: Artigo
Idioma: English
Publicado em: Journal of Vegetation Science 2020
Assuntos:
Acesso em linha: https://repositorio.inpa.gov.br/handle/1/17732
id oai:repositorio:1-17732
recordtype dspace
spelling oai:repositorio:1-17732 Predicting environmental gradients with fern species composition in Brazilian Amazonia Zuquim, Gabriela Tuomisto, Hanna Jones, Mirkka M. Prado, J. Figueiredo, Fernando Oliveira Gouvêa Moulatlet, Gabriel M. Costa, Flávia Regina Capellotto Quesada, Carlos Alberto Emilio, Thaise Filicophyta Pteridophyta Aim: A major problem for conservation in Amazonia is that species distribution maps are inaccurate. Consequently, conservation planning needs to be based on other information sources such as vegetation and soilmaps, which are also inaccurate. We propose and test the use of biotic data on a common and relatively easily inventoried group of plants to infer environmental conditions that can be used to improvemaps of floristic patterns for plants in general. Location: Brazilian Amazonia. Methods: We sampled 326 plots of 250 m × 2 m separated by distances of 1-1800 km. Terrestrial fern individuals were identified and counted. Edaphic data were obtained from soil samples and analysed for cation concentration and texture. Climatic data were obtained from Worldclim. We used a multivariate regression tree to evaluate the hierarchical importance of soils and climate for fern communities and identified significant indicator species for the resultant classification. We then tested how well the edaphic properties of the plots could be predicted on the basis of their floristic composition using two calibration methods, weighted averaging and k-nearest neighbour estimation. Results: Soil cation concentration emerged as the most important variable in the regression tree, whereas soil textural and climatic variation played secondary roles. Almost all the plot classes had several fern species with high indicator values for that class. Soil cation concentration was also the variablemost accurately predicted on the basis of fern community composition (R2 = 0.65-0.75 for log-transformed data). Predictive accuracy varied little among the calibration methods, and was not improved by the use of abundance data instead of presence-absence data. Conclusions: Fern species composition can be used as an indicator of soil cation concentration, which can be expected to be relevant also for other components of rain forests. Presence-absence data are adequate for this purpose, which makes the collecting of additional data potentially very rapid. Comparison with earlier studies suggests that edaphic preferences of fern species have good transferability across geographical regions within lowland Amazonia. Therefore, species and environmental data sets already available in the Amazon region represent a good starting point for generating better environmental and floristic maps for conservation planning. © 2014 International Association for Vegetation Science. 2020-06-15T21:48:59Z 2020-06-15T21:48:59Z 2014 Artigo https://repositorio.inpa.gov.br/handle/1/17732 10.1111/jvs.12174 en Volume 25, Número 5, Pags. 1195-1207 Restrito Journal of Vegetation Science
institution Instituto Nacional de Pesquisas da Amazônia - Repositório Institucional
collection INPA-RI
language English
topic Filicophyta
Pteridophyta
spellingShingle Filicophyta
Pteridophyta
Zuquim, Gabriela
Predicting environmental gradients with fern species composition in Brazilian Amazonia
topic_facet Filicophyta
Pteridophyta
description Aim: A major problem for conservation in Amazonia is that species distribution maps are inaccurate. Consequently, conservation planning needs to be based on other information sources such as vegetation and soilmaps, which are also inaccurate. We propose and test the use of biotic data on a common and relatively easily inventoried group of plants to infer environmental conditions that can be used to improvemaps of floristic patterns for plants in general. Location: Brazilian Amazonia. Methods: We sampled 326 plots of 250 m × 2 m separated by distances of 1-1800 km. Terrestrial fern individuals were identified and counted. Edaphic data were obtained from soil samples and analysed for cation concentration and texture. Climatic data were obtained from Worldclim. We used a multivariate regression tree to evaluate the hierarchical importance of soils and climate for fern communities and identified significant indicator species for the resultant classification. We then tested how well the edaphic properties of the plots could be predicted on the basis of their floristic composition using two calibration methods, weighted averaging and k-nearest neighbour estimation. Results: Soil cation concentration emerged as the most important variable in the regression tree, whereas soil textural and climatic variation played secondary roles. Almost all the plot classes had several fern species with high indicator values for that class. Soil cation concentration was also the variablemost accurately predicted on the basis of fern community composition (R2 = 0.65-0.75 for log-transformed data). Predictive accuracy varied little among the calibration methods, and was not improved by the use of abundance data instead of presence-absence data. Conclusions: Fern species composition can be used as an indicator of soil cation concentration, which can be expected to be relevant also for other components of rain forests. Presence-absence data are adequate for this purpose, which makes the collecting of additional data potentially very rapid. Comparison with earlier studies suggests that edaphic preferences of fern species have good transferability across geographical regions within lowland Amazonia. Therefore, species and environmental data sets already available in the Amazon region represent a good starting point for generating better environmental and floristic maps for conservation planning. © 2014 International Association for Vegetation Science.
format Artigo
author Zuquim, Gabriela
author2 Tuomisto, Hanna
Jones, Mirkka M.
Prado, J.
Figueiredo, Fernando Oliveira Gouvêa
Moulatlet, Gabriel M.
Costa, Flávia Regina Capellotto
Quesada, Carlos Alberto
Emilio, Thaise
author2Str Tuomisto, Hanna
Jones, Mirkka M.
Prado, J.
Figueiredo, Fernando Oliveira Gouvêa
Moulatlet, Gabriel M.
Costa, Flávia Regina Capellotto
Quesada, Carlos Alberto
Emilio, Thaise
title Predicting environmental gradients with fern species composition in Brazilian Amazonia
title_short Predicting environmental gradients with fern species composition in Brazilian Amazonia
title_full Predicting environmental gradients with fern species composition in Brazilian Amazonia
title_fullStr Predicting environmental gradients with fern species composition in Brazilian Amazonia
title_full_unstemmed Predicting environmental gradients with fern species composition in Brazilian Amazonia
title_sort predicting environmental gradients with fern species composition in brazilian amazonia
publisher Journal of Vegetation Science
publishDate 2020
url https://repositorio.inpa.gov.br/handle/1/17732
_version_ 1787141147753185280
score 11.755432