Artigo

Black carbon affects the cycling of non-black carbon in soil

Black carbon (BC) is an important fraction of many soils worldwide and plays an important role in global C biogeochemistry. However, few studies have examined how it influences the mineralization of added organic matter (AOM) and its incorporation into soil physical fractions and whether BC decompos...

ver descrição completa

Autor principal: Liang, Biqing
Outros Autores: Lehmann, Johannes, Sohi, Saran P., Thies, Janice E., O'Neill, Brendan E., Trujillo, Lucerina, Gaunt, John L., Solomon, Dawit, Grossman, Julie M., Neves, Eduardo Goés, Luizão, Flávio Jesus
Grau: Artigo
Idioma: English
Publicado em: Organic Geochemistry 2020
Assuntos:
Acesso em linha: https://repositorio.inpa.gov.br/handle/1/18353
Resumo:
Black carbon (BC) is an important fraction of many soils worldwide and plays an important role in global C biogeochemistry. However, few studies have examined how it influences the mineralization of added organic matter (AOM) and its incorporation into soil physical fractions and whether BC decomposition is increased by AOM. BC-rich Anthrosols and BC-poor adjacent soils from the Central Amazon (Brazil) were incubated for 532 days either with or without addition of 13C-isotopically different plant residue. Total C mineralization from the BC-rich Anthrosols with AOM was 25.5% (P < 0.05) lower than with mineralization from the BC-poor adjacent soils. The AOM contributed to a significantly (P < 0.05) higher proportion to the total C mineralized in the BC-rich Anthrosols (91-92%) than the BC-poor adjacent soils (69-80%). The AOM was incorporated more rapidly in BC-rich than BC-poor soils from the separated free light fraction through the intra-aggregate light fraction into the stable organo-mineral fraction and up to 340% more AOM was found in the organo-mineral fraction. This more rapid stabilization was observed despite a significantly (P < 0.05) lower metabolic quotient for BC-rich Anthrosols. The microbial biomass (MB) was up to 125% greater (P < 0.05) in BC-rich Anthrosols than BC-poor adjacent soils. To account for increased MB adsorption onto BC during fumigation extraction, a correction factor was developed via addition of a 13C-enriched microbial culture. The recovery was found to be 21-41% lower (P < 0.05) for BC-rich than BC-poor soils due to re-adsorption of MB onto BC. Mineralization of native soil C was enhanced to a significantly greater degree in BC-poor adjacent soils compared to BC-rich Anthrosols as a result of AOM. No positive priming by way of cometabolism due to AOM could be found for aged BC in the soils. © 2009 Elsevier Ltd. All rights reserved.