Tese

Estoque de carbono e quantificação da incerteza propagada combinando inventário florestal e sensoriamento remoto

REDD+ is an instrument developed at UNFCCC conferences to financially reward developing countries for efforts to reduce deforestation and forest degradation. In 2010, the IPCC task force in Yokohama evaluated and recommended linking existing field and remote sensing works to forest emissions esti...

ver descrição completa

Autor principal: Celes, Carlos Henrique Souza
Grau: Tese
Idioma: por
Publicado em: Instituto Nacional de Pesquisas da Amazônia – INPA 2020
Assuntos:
Acesso em linha: https://repositorio.inpa.gov.br/handle/1/4982
http://lattes.cnpq.br/5735970963851152
Resumo:
REDD+ is an instrument developed at UNFCCC conferences to financially reward developing countries for efforts to reduce deforestation and forest degradation. In 2010, the IPCC task force in Yokohama evaluated and recommended linking existing field and remote sensing works to forest emissions estimates (IPCC, 2010) in a system that should be measurable, reportable and verifiable (MRV) (UNFCCC, 2009). In developing countries these estimates are more difficult due to the lack of a field data collection system and the availability of both current and temporal images to generate their emission history. The adoption of techniques associated with mathematical modeling and computer system is necessary to reach the recommendations for REDD + projects and were applied in the Ducke Reserve of INPA. Forest inventory with ALS LiDAR and SRTM airborne data, RapidEye and Landsat 8 was used. Linear models were used to establish relationships and the Monte Carlo technique was applied to quantify the propagated error. The error in diameter measurement could be measured and controlled in forest inventories by adopting remeasurement techniques with tape and photogrammetry. The development of scripts for the processing of LiDAR data allowed us to quantify and control errors in land estimates. The georeferencing of the plots for the combination with high resolution data requires procedures that guarantee their accuracy without compromising the field activities. The Monte Carlo method was important for the estimation of the error mainly of the georeferencing of the field data, since the formula of the error propagation does not allow this type of approach. The scripts are in development and available to any user, in order to make the method replicable in different places. The models and their uncertainties demonstrated spatial variation with recognized cause and consequence effects, necessary for the reliability of the models. The most endangered mature forest areas are the plateau regions around the Ducke Reservation suitable for REDD+ project and sustainable development.