Tese

Análise e modelagem em larga escala para as frequências 8, 9, 10 e 11 ghz em ambientes indoor

Within the context of studies related to radiopropagation, this work presents a proposal for large-scale modeling of propagation loss for 8, 9, 10 and 11 GHz bands in relation to the number of walls, distance and polarization. Measurement campaigns were conducted in the Annex II corridor and in a t...

ver descrição completa

Autor principal: BATALHA, Iury da Silva
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Pará 2020
Assuntos:
Acesso em linha: http://repositorio.ufpa.br:8080/jspui/handle/2011/12263
Resumo:
Within the context of studies related to radiopropagation, this work presents a proposal for large-scale modeling of propagation loss for 8, 9, 10 and 11 GHz bands in relation to the number of walls, distance and polarization. Measurement campaigns were conducted in the Annex II corridor and in a teaching laboratory located at the Federal University of Pará. The measurement campaign was performed using VV and HH co-polarized directional horn antennas and VH cross polarization nantennas in Line of Sight (LoS) and Line of Sight (NLoS) conditions, the transmitter was fixed within the environment with 0 dBm transmission with VV and HH antenna array and 15 dBm for VH. Directional antennas for transmitter and receiver with 29.3∘ elevation and 29∘ azimuth were used for frequencies 8, 9, 10 and 11 GHz. The Minium Mean Square Error (MMSE) technique was applied to determine the values of the equation parameters as: PLE , XPD, HHPD, and OPLE. The proposed propagation loss model presented satisfactory results compared to the measured data presenting a low standard deviation. A point-to-point standard deviation analysis is also presented within the two environments for the studied frequencies. For the corridor the standard deviation values using polarized V-V antennas were 7, 7.5, 5.6 and 5 dB, and for cross-polarized V-H antennas were 5, 6.2, 2.3 and 3.5 dB for studies frequencies. For the laboratory the values of standard deviation for polarized V-V antennas were 7, 7, 6.5 and 7.3 dB and for polarized H-H antennas were 9.3, 6.1, 6.1 and 6 dB. The polarization loss factor (XPD) presented in the extension of the CIX model for the corridor present values of 19.3, 28.7, 21.3 and 14.3 for the frequencies of 8, 9, 10 and 11 GHz, respectively.