/img alt="Imagem da capa" class="recordcover" src="""/>
Tese
Eletrônica molecular via método híbrido DFT/FGNE em anéis fenilas acoplados a eletrodos metálicos de nanotubos de carbono: a regra de conformação e quiralidade molecular
In this thesis, we investigate in detail the electronic transport properties, conformation and symmetry of zz9 SWCN structures attached to phenyl rings (2, 3, 4 and 5) under the influence of external electric field (voltage) via hybrid method DFT type B3LYP 6-311G (d, p) combined with NEGF and Group...
Autor principal: | SILVA JÚNIOR, Carlos Alberto Brito da |
---|---|
Grau: | Tese |
Idioma: | por |
Publicado em: |
Universidade Federal do Pará
2012
|
Assuntos: | |
Acesso em linha: |
http://repositorio.ufpa.br/jspui/handle/2011/2889 |
Resumo: |
---|
In this thesis, we investigate in detail the electronic transport properties, conformation and symmetry of zz9 SWCN structures attached to phenyl rings (2, 3, 4 and 5) under the influence of external electric field (voltage) via hybrid method DFT type B3LYP 6-311G (d, p) combined with NEGF and Group Theory. We found a good relationship between: 1 - the chiral index () by Group Theory and the law of cos2 (, dihedral angle) for the geometry under the influence of external electric field because only depends on the atomic positions () of conformations, and is also strongly correlated with current passing through the system; 2 - normalized conductance (G / Go) is proportional to cos2 in the region of the gap (EHOMO-ELUMO), ie, in regions where the resonance occurs negative differential resistance (NDR) and 3 - the Fowler-Northeim (FN) plot Vmin displays that occurs when the tail of a resonant transmission peak voltage enters the window, that is, when these structures is an NDR, NDR as the number of the IV plot is associated with the number Vmin of the FN plot and can be explained by the model of molecular transport line 4 - the barrier height (EF - EHOMO and ELUMO - EF) as a function of molecular length, 5 - Vmin as a function of barrier height (EF - EHOMO ) and the molecular length. Thus, one implies that the molecular conformation plays a major role in determining the transport properties of the junction, suggests that the second law of cos2 is a more general applicability regardless of the nature of the electrodes; 3 serves as a spectroscopic tool and also to identify the molecule at the junction, 4 and 5 as the molecular length reaches a certain value (1.3 nm) the Vmin remains virtually unchanged. The results showed that the structural properties (geometric) undergo significant changes with increasing external electric field that are in good agreement with the values found in literature. The behavior of I-V curves and G/Go-V lose their linear dependence to give rise to a nonlinear behavior with the appearance of NDR. This point reveals the structural modifications suffered by the system. The I-V plot confirmed the statements that were made through the structural analysis for the system considered and showed how it gives the load flow analysis systems. |