Dissertação

Efeitos protetores da prolactina em cultivo glial de córtex de ratos expostos ao metilmercúrio

Methylmercury (MeHg) is a compound highly neurotoxic and its degenerative mechanisms are not very clear yet. In Central Nervous System, MeHg is mostly uptake by astrocytes, decreasing neuronal exposition. Studies demonstrated that prolactin (PRL) has mitogenic effects on astrocytes and it can regula...

ver descrição completa

Autor principal: SANTOS, Andréa Cristina Monteiro dos
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2013
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/3521
Resumo:
Methylmercury (MeHg) is a compound highly neurotoxic and its degenerative mechanisms are not very clear yet. In Central Nervous System, MeHg is mostly uptake by astrocytes, decreasing neuronal exposition. Studies demonstrated that prolactin (PRL) has mitogenic effects on astrocytes and it can regulate pro-inflammatories cytokines expression. The aim of this work was to verify the protective effects of PRL on disturbs provoked by MeHg on cellular viability, morphology, GFAP (glial fibrillary acidic protein) expression, mitogenesis and release of interleukin-1β in glia primary culture of cerebral cortex of newborn rats, with astrocytes in focus. Glia primary culture were exposed to differents concentrations of MeHg (0,1, 1, 5 e 10 μM) in differents time intervals (2, 4, 6, 18 e 24 h) in medium with fetal bovine serum 10%. Results demonstrated progressive decreasing of 20% e 62% on cellular viability after exposed to 5 e 10 μM MeHg for 24 h, respectively, by MTT [3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay and disturbs in the GFAP expression and distribution. Differents concentrations of PRL (0.1, 1 e 10 nM) were added in free serum medium to evaluate it proliferative action. This was confirmed by mitogenesis induction around 4.5x in 18h at 10 mM PRL. In this conditions (free serum) were evaluated the effects of co-treatment of 1 nM PRL + 5 μM MeHg on cellular viability, morphology, GFAP expression, mitotic index and release of IL-1β. PRL attenuated disturbs caused by MeHg, increasing viability in 33%, GFAP expression, cellular proliferation (4x), and attenuating morphologic alterations like nuclear picnosis and lisis. These findings prove that PRL can act like a cytoprotective agent in primary culture of glia, particularly in astrocytes, in addition to its mitogenic effects.