/img alt="Imagem da capa" class="recordcover" src="""/>
Trabalho de Conclusão de Curso - Graduação
Solução exata e estabilização exponencial para uma equação de reação
Neste trabalho estudamos alguns aspectos quantitativos e qualitativos de uma equação de reação-difusão não linear. Os modelos de difusão não lineares têm sido amplamente aplicados em diversas áreas da ciência e principalmente na modelagem de populações. Os principais resultados obtidos aqui são: a s...
Autor principal: | COSTA, Dielle Cruz da |
---|---|
Grau: | Trabalho de Conclusão de Curso - Graduação |
Publicado em: |
2022
|
Assuntos: | |
Acesso em linha: |
https://bdm.ufpa.br:8443/jspui/handle/prefix/4536 |
Resumo: |
---|
Neste trabalho estudamos alguns aspectos quantitativos e qualitativos de uma equação de reação-difusão não linear. Os modelos de difusão não lineares têm sido amplamente aplicados em diversas áreas da ciência e principalmente na modelagem de populações. Os principais resultados obtidos aqui são: a solução exata do problema não linear e a propriedade de decaimento exponencial da energia total. No que diz respeito a resolução analítica do problema o ponto central consiste em justificar a escolha adequada do coeficiente de reação k(x), a fim de garantir a aplicação do método da separação de variáveis para o problema não linear. Feito isto, passamos a considerar dois problemas: um de valor inicial e outro de contorno, os quais são resolvidos. Em relação a estabilização exponencial da energia, usamos técnicas multiplicativas para encontrarmos a lei de dissipação e a partir daí, aplicamos as desigualdades de Poincaré e
de Jensen para construirmos a estimativa de decaimento exponencial. |