Dissertação

Integração de dados de múltiplas estações para a previsão de eventos hidrológicos extremos na Bacia do Rio Negro com aprendizado profundo

Apliquei redes neurais convolucionais com arquiteturas baseadas em sub-redes para prever cheias e secas extremas na bacia do Rio Negro, localizada na região norte da América do Sul. A bacia é caracterizada por formações geológicas diversas, incluindo uma variedade de tipos de rochas que influenci...

ver descrição completa

Autor principal: Mendes, Cíntia de Lima Eleutério
Outros Autores: http://lattes.cnpq.br/9355094160308489, http://orcid.org/0009-0009-0561-9148
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2025
Assuntos:
Acesso em linha: https://tede.ufam.edu.br/handle/tede/10833
Resumo:
Apliquei redes neurais convolucionais com arquiteturas baseadas em sub-redes para prever cheias e secas extremas na bacia do Rio Negro, localizada na região norte da América do Sul. A bacia é caracterizada por formações geológicas diversas, incluindo uma variedade de tipos de rochas que influenciam a infiltração e os padrões de escoamento, além de fatores climáticos que moldam a dinâmica das precipitações. Adicionalmente, a hidrodinâmica da bacia, impulsionada pelas interações entre suas formações geológicas e o fluxo de água, bem como sua topografia, que governa a direção e a velocidade do escoamento superficial, desempenham papéis cruciais em seu comportamento hidrológico. O regime de chuvas e a sazonalidade determinam ainda a distribuição temporal dos níveis de água. Os tipos de cobertura do solo também desempenham um papel significativo ao alterar as taxas de infiltração e o escoamento superficial. Analisando dados hidrológicos de cinco estações, a saber, Cucuí, Serrinha, Caracaraí, Santa Maria do Boiaçú e Moura, esta pesquisa busca modelar e prever eventos hidrológicos extremos. A aplicação da abordagem de aprendizado profundo destaca a importância de integrar dados de múltiplas estações para capturar variações localizadas e diferenças regionais. Esses achados ressaltam o potencial da inteligência artificial como uma ferramenta complementar aos modelos existentes usados pelas autoridades competentes para monitoramento, auxiliando na mitigação dos impactos de inundações e secas extremas. Embora não seja uma solução autônoma, o modelo fornece compreensão valiosa e enfatiza a necessidade de melhorias adicionais, especialmente por meio de ajustes de hiperparâmetros, para aumentar sua confiabilidade e precisão.